Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЕСА дод.спец.,маг.+++.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
6.73 Mб
Скачать

7. Моделювання об’єктів та систем на основі потенційних функцій;

8. Математична модель простої механічної системи у поступово-обертальної системи координат руху;

 9. Типові розрахунки схеми електромеханічних систем з різноманітним складанням елементів;

10. Коротка характеристика числових методів вирішення диференційних та алгебраїчних рівнянь;

1) Одношаговые методы, в которых для нахождения следующей точки на кривой y = f(x) требуется информация лишь об одном предыдущем шаге. Одношаговыми являются методы Эйлера и методы Рунге-Кутта.

Метод Эйлера — простейший численный метод решения систем обыкновенных дифференциальных уравнений. Впервые описан Леонардом Эйлером в 1768 году в работе «Интегральное исчисление»[1]. Метод Эйлера является явным, одношаговым методом первого порядка точности, основанном на аппроксимации интегральной кривой кусочно-линейной функцией, так называемой ломаной Эйлера.

Метод Эйлера — простейший численный метод решения систем обыкновенных дифференциальных уравнений. Впервые описан Леонардом Эйлером в 1768 году в работе «Интегральное исчисление»[1]. Метод Эйлера является явным, одношаговым методом первого порядка точности, основанном на аппроксимации интегральной кривой кусочно-линейной функцией, так называемой ломаной Эйлера.

Формально, методом Рунге — Кутты является модифицированный и исправленный метод Эйлера, они представляют собой схемы второго порядка точности. Существуют стандартные схемы третьего порядка, не получившие широкого распространения. Наиболее часто используется и реализована в различных математических пакетах (MapleMathCADMaxima) стандартная схема четвёртого порядка. Иногда при выполнении расчётов с повышенной точностью применяются схемы пятого и шестого порядков[1][2]. Построение схем более высокого порядка сопряжено с большими вычислительными трудностями[3]. Методы седьмого порядка должны иметь по меньшей мере девять стадий, в схему восьмого порядка входит 11 стадий. Хотя схемы девятого порядка не имеют большой практической значимости, неизвестно, сколько стадий необходимо для достижения этого порядка точности. Аналогичная задача существует для схем десятого и более высоких порядков[3].

Многошаговые методы (методы прогноза и коррекции), в которых для отыскивания следующей точки кривой y = f(x) требуется информация более чем об одной из предыдущих точек. Чтобы получить достаточно точное числовое значение, часто прибегают к итерации.

К числу таких методов относятся методы Милана, Адамса-Башфорта и Хемминга.

Ме́тод А́дамса — конечноразностный многошаговый метод численного интегрирования обыкновенных дифференциальных уравнений первого порядка. В отличие отметода Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.

Назван по имени предложившего его в 1855 году английского астронома Джона К. Адамса.

11. Рішення диференційних рівнянь з використанням пакету прикладних програм МАСС;

12. Моделювання вхідних впливів, кінематичних похибок, та збурень на ЕОМ;

13. Моделювання гармонічних або циклічних навантажень у виді биття, навантажень у виді сухе ковзання, внутрішнього в’язкого тертя;