- •1. Материялық нүктенің қозғалысын кинематикалық сипаттау. Жылдамдық және үдеу
- •Жылдамдық
- •Үдеу және оның құраушылары
- •2. Қисық сызықты қозғалыс кезіндегі жылдамдық ж/е үдеу Жылдамдық
- •Үдеу және оның құраушылары
- •3. Қозғалмайтын оське қатысты айналған дененің сызықтық және бұрыштық жылдамдықтары
- •4. Ньютон заңдары. Масса. Күш Ньютон заңдары Ньютонның бірінші заңы – инерция заңы
- •Ньютонның екінші заңы– материялық нүкте динамикасының негізгі заңы
- •Ньютонның үшінші заңы
- •Күш. Масса
- •5. Механикалық үйкеліс және тартылыс күштері
- •1) Тартылыс күші (гравитациялық күш)
- •6. Бүкіләлемдік тартылыс заңы
- •7. Механикадағы импульстің сақталу заңы
- •8. Механикалық жүйенің массалар центрі (инерция центрі) және оның қозғалыс заңы
- •9. Күш моменті және импульс моменті Күш моменті
- •Импульс моменті
- •10. Қатты дененің инерция моменті
- •11. Қозғалмайтын оське қатысты қатты дененің айналмалы қозғалыс динамикасының теңдеуі
- •12. Кинетикалық және потенциалдық энергия. Энергияның сақталу заңы Энергияның сақталу заңы
- •13. Серпімді деформация. Гук заңы
- •14. Импульс моментінің сақталу заңы
- •15. Ағын сызықтары. Ағын түтігі. Идеал сұйықтықтың станционар ағысы. Үзіліссіздік теңдеуі
- •16. Бернулли теңдеуі
- •17.Механикалық гармоникалық тербелістер. Гармониялық тербелістердің жалпы сипаттамалары. Механикалық гармониялық тербелістердің дифференциалдық теңдеуі
- •18. Серіппелі маятник
- •19. Математикалық маятник
- •20. Физикалық маятник. Физикалық маятниктің келтірілген ұзындығы
- •21. Көлденең және бойлық толқындар. Қума толқын теңдеуі
- •22. Термодинамикалық жүйелер және олардың параметрлері: қысым, температура, көлем
- •23. Клапейрон-Менделеев теңдеуі. Мольдік масса, зат мөлшері
- •24. Идеал газдың молекула-кинетикалық теориясының (мкт) негізгі теңдеуі. Газ молекулаларының орташа квадраттық жылдамдығы.
- •26. Барометрлік формула. Больцман үлестірілуі.
- •27. Термодинамикалық жүйелердегі тасымалдау құбылысы: тұтқырлық (Ньютон заңы).
- •28. Термодинамикалық тепе-теңсіз жүйелердегі тасымалдау құбылыстары. Диффузия (Фик заңы).
- •29. Термодинамикалық тепе-теңсіз жүйелердегі тасымалдау құбылыстары. Жылуөткізгіштік (Фурье заңы).
- •30. Газдардың жылусыйымдылықтары. Тұрақты көлем және тұрақты қысым кезіндегі мольдік жылусыйымдылықтар. Майер теңдеуі.
- •31. Термодинамиканың бірінші бастамасы. Жүйенің ішкі энергиясы. Жұмыс және жылу.
- •32. Изопроцестер. Изохоралық, изобаралық және изотермиялық процестер.
- •Изохоралық процес ( )
- •Изобаралық процесс ( )
- •Изотермиялық процесс ( )
- •33. Изопроцестер. Адиабаттық және политроптық процестер.
- •Адиабаталық процесс ( )
- •Политроптық процесс ( )
- •34. Қайтымды және қайтымсыз термодинамикалық процестер. Дөңгелек процестер (циклдер). Жылу машиналары және олардың пәк-і.
- •35. Термодинамиканың екінші бастамасы. Энтропия және оның қасиеттері.
- •36. Нақты газдар. Ван-дер-Ваальс теңдеуі.
- •Молекула көлемін ескеру
- •37. Элементар электр заряды. Электр зарядының сақталу заңы.
- •38. Кулон заңы. Электрлік тұрақты. Ортаның диэлектрлік өтімділігі.
- •39. Электростатикалық өріс. Электр өрісінің кернеулігі. Электр өрістерінің суперпозиция принципі.
- •40. Электр өрісінің кернеулік векторының ағыны. Гаусс теоремасы.
- •41. Электростатикалық өрісте заряд орын ауыстырғанда істелінетін жұмыс.
- •42. Электростатикалық өріс кернеулігі векторының тұйық контур бойымен циркуляциясы.
- •43. Электростатикалық өріс потенциалы. Электростатикалық өріс кернеулігі мен потенциалы арасындағы байланыс.
- •44. Электростатикалық өрістегі өткізгіштер. Оқшауланған өткізгіштің электрсыйымдылығы. Конденсаторлар. Оқшауланған өткізгіштің электрлік сыйымдылығы
- •Өзара сыйымдылық. Конденсаторлар
- •45. Зарядталған конденсатордың энергиясы. Электростатикалық өріс энергиясы. Электростатикалық өріс энергиясының көлемдік тығыздығы.
- •47 Ом заңының жалпылама теңдеуі.
- •Осы формула тұйық тізбек үшін Ом заңы деп аталады.
- •57. Вакуумдағы магнит өрісі үшін векторының циркуляциясы.Толық ток заңы Берілген тұйық контур бойымен векторының циркуляциясы деп мына интегралды айтады:
- •88 Атом ядросының құрылысы. Ядро модельдері.
13. Серпімді деформация. Гук заңы
Серпімді деформацияда күш әсері тоқтаған соң, металл бастапқы қалпына келеді. Серпімді деформацияда кернеу мен деформация ара қатысы Гук заңы бойынша өзгереді (а,б):
Гук заңы — тегеурін мен одан туған пішін өзгерісі арасындағы тура пропорционалдықты анықтайтын заң.
Гук
заңы тәжірибе негізінде көптеген
серпімді денелер үшін белгілі бір шекте
жүктемелеу арқылы расталады. Гук заңы
тура пропорционал болып табылатын
тегеуріннің ең жоғары шегі —
пропорционалдық шек болып табылады.
Бұл заң ұлғаю, сығу және ығыстыру
кезіндегі Гук заңы болып бөлінеді.
Бірінші заң бойынша нормаль
кернеу
салыстырмалы
ұзартуға пропорциональ яғни
мұндағы
—
ұлғаю кезіндегі серпімділік модулі
деп аталатын пропорционалдық коэффициенті.
Екінші заң бойынша жанама кернеу
ығысу
бұрышына
пропорционал
және
,
мұндағы
—
ығысу кезіндегі серпінділік
модулі;
серпінділік модульдері
және
заттың
түріне қарай тәжірибе жолымен анықталады
және заттың қатаңдығы шамасын сипаттайды.
Өлшем бірлігі кг/ см2 немесе
км/мм.
14. Импульс моментінің сақталу заңы
Массасы
қатты дененің кішкентай бөлшегін
қарастырайық. Оның жылдамдығы
және оған қатысты импульсі
нүкте траекториясына жанама бойымен
бағытталған.
Импульс моментін анықтау
Қозғалмайтын
О нүктесіне қатысты импульс моменті
векторы
материялық нүктенің радиус-векторы
мен оның импульсінің
векторлық
көбейтіндісіне тең физикалық шама:
Импульс моменті векторы векторлық көбейтінді ережесі арқылы анықталып, айналу осі бойында жатады, ал оның модулі мына өрнекпен анықталады:
Материялық
нүктенің
осіне қатысты импульс моменті векторы
осы
векторының айналу осіне түсірілген
проекциясы арқылы анықталады. Ол айналу
осінде жатыр және оның модулі мына
теңдеу арқылы анықталады.
Қатты
дененің Z осьіне қатысты
импульс моменті векторы барлық
нүктелерінің
векторларының қосындысына тең. Барлық
векторлар айналу осінде жатыр және
бірдей бағытталған.
Олардың модулі мынаған тең.
теңдігін векторлық түрде былай жазуға болады:
Оны
уақыт бойынша дифференциалдап(
)
мына өрнекті аламыз:
Бұл қатты дененің айналмалы қозғалыс динамикасының негізгі заңының бір түрі: ось бойымен қатты дененің айналу кезіндегі импульс моменті уақыт бойынша туындысы сол денеге әсер ететін сыртқы күштердің моментіне ( ) тең.
Соңғы теңдікті былай жазуға болады.
Айналушы дененің импульс моментінің өзгерісі оған әсер етуші сыртқы күштердің әсерінен болады.
Тұйық
жүйеде сыртқы күштердің моменті
нольге тең.
ж/ә
Бұл теңдік импульс моментінің сақталу заңын құрайды: қозғалмайтын оське қатысты дененің импульс моменті тұйық жүйеде тұрақты болып, уақыт бойынша өзгермейді.
Бұл тұжырым табиғаттың іргелі заңдарының бірі болып, кеңістіктің изотропты (барлық бағыттар тең құқықты) екендігінің салдары, яғни табиғатта оқшауланған бағыттың жоқ екендігін көрсетеді. Тұйық жүйенің бұрылуы оның механикалық қасиеттерін өзгерте алмайды.
