- •Содержание
- •1.Структура изучения дисциплины 6
- •2.1.11.Вопросы для самоконтроля 47
- •2.1.16.Вопросы для самоконтроля 53
- •3. Практикум по дисциплине 118
- •3.3. Основы алгоритмизации и программирования 121
- •4. Контрольная работа 132
- •Введение
- •1.Структура изучения дисциплины
- •1.1 Цель и задачи дисциплины
- •1.2. Методические рекомендации по изучению дисциплины Подраздел 2.1«Основы построения эвм» раздела 2 данного пособия
- •«Основы алгоритмизации и программирования»;
- •«Архитектура эвм»;
- •1.3.Глоссарий
- •1.4.Список рекомендуемых источников
- •1.5.Форма контроля
- •2.Теоретические основы организации и функционирования эвм
- •2.1. Основы построения эвм
- •2.1.1.Основные понятия и методы теории информации и кодирования
- •2.1.2.Формы, свойства, показатели качества информации
- •2.1.3.Меры и единицы представления, измерения и хранения информации
- •2.1.4. Системы счисления
- •Двоичная арифметика
- •Разрядные сетки эвм
- •Прямой и обратный коды
- •2.1.5.Кодирование данных в эвм
- •Кодирование текстовой информации
- •Кодирование чисел
- •Кодирование графической информации
- •Кодирование звуковой информации
- •Кодирование видеоинформации
- •2.1.6. Основные понятия алгебры логики
- •2.1.7.Логические основы эвм
- •2.1.8.Вопросы для самоконтроля
- •2.1.9. Архитектура эвм
- •Внешние устройства персонального компьютера:
- •Принципы фон Неймана
- •2.1.10. Состав и назначение основных элементов персонального компьютера
- •Запоминающие устройства: классификация, принцип работы, основные характеристики
- •Основные характеристики вычислительной техники
- •2.1.11.Вопросы для самоконтроля
- •2.1.12.Программные средства эвм
- •2.1.13.Классификация программного обеспечения
- •Системное программное обеспечение (спо)
- •Системы программирования
- •Прикладное программное обеспечение
- •Базовое программное обеспечение. Операционные системы (ос)
- •2.1.14.Понятие файла, файловой структуры
- •2.1.15. Операционная система ms Windows
- •2.1.16.Вопросы для самоконтроля
- •Классификация программного обеспечения.
- •2.1.17.Основы алгоритмизации и программирования
- •2.1.18. Понятие алгоритма
- •2.1.19. Основные типы алгоритмов
- •Линейные алгоритмы
- •Алгоритмы ветвлений
- •Циклические алгоритмы
- •2.1.20. Основные конструкции языка Turbo-Pascal
- •2.1.21. Структура программы на языке Паскаль
- •2.1.22. Основные операторы языка Паскаль Оператор присваивания
- •2.1.23. Операторы передачи управления
- •2.1.24. Программирование. Циклы
- •2.1.25. Программирование. Массивы
- •2.1.26.Этапы развития, принципы построения и классификация средств вт Этапы развития компьютеров
- •Поколения компьютеров - история развития вычислительной техники
- •Можно выделить общие тенденции развития компьютеров:
- •Нулевое поколение. Механические вычислители
- •Первое поколение. Компьютеры на электронных лампах (194х-1955)
- •Примеры компьютеров:
- •Второе поколение. Компьютеры на транзисторах (1955-1965г.Г.)
- •Третье поколение. Компьютеры на интегральных схемах (1965-1980)
- •Четвертое поколение. Компьютеры на больших (и сверхбольших) интегральных схемах (1980-…)
- •Пятое поколение эвм
- •Типы компьютеров: персональные, микроконтроллеры, серверы, мейн- фреймы и др.
- •Персональные компьютеры (пк)
- •Игровые компьютеры
- •Карманные компьютеры
- •Микроконтроллеры
- •Серверы
- •Мейнфреймы
- •Суперкомпьютеры
- •Рабочие станции
- •История развития персональных компьютеров
- •Основные принципы работы компьютера
- •2.2. Устройства управления процессами эвм
- •Устройство процессора и его назначение Описание и назначение процессоров
- •Устройство процессора
- •Работа процессора
- •Характеристики процессора
- •2.3. Память эвм Запоминающие устройства: классификация, принцип работы, основные характеристики
- •Оперативная память компьютера (озу, ram)
- •Назначение озу
- •Особенности работы озу
- •Логическое устройство оперативной памяти
- •Типы оперативной памяти
- •Вид модуля оперативной памяти
- •Разделы жесткого диска
- •2.4.Устройства ввода – вывода, периферийные устройства эвм Контроллеры и шина
- •Терминалы
- •Клавиатуры
- •Мониторы с электронно-лучевой трубкой
- •Жидкокристаллические мониторы
- •Принтеры
- •Монохромные принтеры
- •Цветные принтеры
- •Телекоммуникационное оборудование
- •Цифровые абонентские линии
- •Цифровые фотокамеры
- •3. Практикум по дисциплине
- •3.1. Арифметические операции в двоичной системе счисления
- •3.2. Построение таблиц истинности для логических формул
- •3.3. Основы алгоритмизации и программирования
- •Двумерные массивы
- •4. Контрольная работа
- •Системы счисления.
- •4.1. Рекомендации по выполнению контрольной работы
- •Раздел 3 контрольной работы должен включать:
- •4.2. Задания контрольной работы
- •4.2.1. Задание 1. Перевод чисел из одной системы счисления в другую
- •4.2.2.Задание 2. Алгебра логики
- •4.2.3.Задание 3. Основы алгоритмизации и программирования
- •Задание 3.1. Линейный алгоритм
- •Задание 3.2. Алгоритмы ветвления
- •Задание 3.3. Алгоритмы. Циклы
- •Задание 3.4. Одномерные массивы
- •Задание 3.5. Двумерные массивы
Принтеры
Иногда пользователю требуется напечатать созданный документ или страницу, полученную из Интернета, поэтому компьютеры могут быть оснащены принтером. В этом разделе мы опишем некоторые наиболее распространенные типы монохромных (то есть черно-белых) и цветных принтеров.
Монохромные принтеры
Самыми дешевыми являются матричные принтеры, у которых печатающая головка последовательно проходит каждую строку печати. Головка содержит от 7 до 24 игл, возбуждаемых электромагнитным полем. Дешевые матричные принтеры имеют 7 игл для печати, скажем, 80 символов в строке в матрице 5x7. В результате строка состоит из 7 горизонтальных линий, а каждая из этих линий состоит из 5 х 80 = 400 точек. Каждая точка может печататься или не печататься в зависимости от того, какая должна получиться буква. Качество печати можно повышать двумя способами: использовать большее количество игл или реализовать наложение точек. Большинство принтеров можно настраивать, добиваясь различных сочетаний качества и скорости.
Матричные принтеры дешевы (особенно в отношении расходных материалов) и очень надежны, но работают медленно, шумно, и качество печати очень низкое. Тем не менее они широко распространены по крайней мере в трех областях. Во-первых, они очень популярны для печати на больших листах (более 30 см). Во-вторых, ими очень удобно пользоваться при печати на маленьких отрезках бумаги (например, кассовые чеки, уведомлениях о снятии денег с кредитных карт, посадочные талоны в авиакомпаниях). В-третьих, они годятся для распечатки одновременно нескольких листов с вложенной между ними копировальной бумагой, и эта технология — самая дешева Дома удобно использовать недорогие струйные принтеры. В таком принтере подвижная печатающая головка содержит картридж с чернилами. Она двигается горизонтально над бумагой, а чернила в это время выпрыскиваются из крошечных сопел. Объем одной порции чернил приблизительно равен одному пиколитру. Для наглядности уточним, что в одной капле воды может уместится около 100 миллионов таких порций.
Струйные принтеры бывают двух типов: пьезоэлектрические (производятся Epson) и термографические (производятся Canon, HP и Lexmark). В пьезоэлектрических струйных принтерах рядом с чернильной камерой устанавливается специальный кристалл. При подаче на этот кристалл напряжения он деформируется, в результате из форсунки выпускаются чернила. Чем выше напряжение, тем больше выходная порция чернил, причем управление этим процессом осуществляется программно.
В термографических (пузырьковых) струйных принтерах в каждой форсунке устанавливается небольшой резистор. При подаче напряжения резистор быстро нагревается, доводит температуру чернил до точки кипения, в результате последние превращаются в пузырьки газа. Поскольку объем пузырька больше объема чистых чернил, в форсунке создается повышенное давление, под влиянием которого чернила распыляются на бумагу. Затем форсунка охлаждается, и в результате снижения давления внутри форсунки в нее из картриджа подается новая порция чернил. Скорость работы принтера по этой схеме ограничена временными рамками цикла кипения/охлаждения. Размер всех формируемых чернильных капель одинаков, причем, как правило, он уступает аналогичному показателю пьезоэлектрических принтеров.
Струйные принтеры обычно имеют разрешающую способность от 1200 dpi (dotsperinch — точек на дюйм) до 4800 dpi. Они достаточно дешевы, работают бесшумно, однако отличаются низкой скоростью печати и исключительной дороговизной картриджей. Качество печати хорошее — если распечатать фотографию с высоким разрешением на ведущей модели любой линейки струйных принтеров, результат будет не отличить от обычной фотографии формата 8x10.
Вероятно, самым удивительным изобретением в области печатных технологий со времен Йоганна Гуттенберга (J°hann Gutenberg), который изобрел подвижную литеру в XV веке, является лазерный принтер. Это устройство сочетает хорошее качество печати, универсальность, высокую скорость работы и умеренную стоимость. В лазерных принтерах используется почти та же технология, что и в фотокопировальных устройствах. Многие компании производят устройства, совмещающие свойства копировальной машины, принтера и иногда факса.
Схематически устройство принтера показано на рисунке 16 . Главной частью этого принтера является вращающийся барабан (в некоторых более дорогостоящих системах вместо барабана используется лента). Перед печатью каждого листа барабан получает напряжение около 1000 В и окружается фоточувствительным материалом. Свет лазера проходит вдоль барабана (по длине), почти как пучок электронов в электронно-лучевой трубке, только вместо напряжения для сканирования барабана используется вращающееся восьмиугольное зеркало. Луч света модулируется, в результате получается набор темных и светлых участков. Участки, на которые воздействует луч, теряют свой электрический заряд.
Вращающееся
Чистая Пачка
отпечатанных
бумага
листов
Рисунок
16 -
Схема работы лазерного принтера
После того как нарисована строка точек, барабан немного поворачивается для создания следующей строки. В итоге первая строка точек достигает резервуара с тонером (электростатическим черным порошком). Тонер притягивается к заряженным точкам, и так формируется визуальное изображение строки. Через некоторое время барабан с тонером прижимается к бумаге, оставляя на ней отпечаток изображения. Затем лист проходит через нагретые валики, и изображениезакрепляется. После этого барабан разряжается и остатки тонера счищаются с него. После этого он готов к печати следующей страницы.
Едва ли нужно говорить, что этот процесс представляет собой чрезвычайно сложную комбинацию приемов, требующих знания физики, химии, механики и оптики. Электроника лазерных принтеров состоит из быстродействующего процессора и нескольких мегабайтов памяти для хранения полного изображения в битовой форме и различных шрифтов, одни из которых встроены, а другие загружаются из памяти. Большинство принтеров получают команды, описывающие печатаемую страницу (в противоположность принтерам, получающим изображения в битовой форме от центрального процессора). Эти команды обычно даются на языке PCL от HP или PostScript от Adobe.
Лазерные принтеры с разрешающей способностью 600 dpi и выше могут печатать черно-белые фотографии, но технология при этом гораздо сложнее, чем может показаться на первый взгляд. Рассмотрим фотографию, отсканированную с разрешающей способностью 600 dpi, которую нужно напечатать на принтере с такой же разрешающей способностью (600 dpi). Сканированное изображение содержит 600 х 600 пикселов на дюйм, каждый пиксел характеризуется определенной градацией серого цвета от 0 (белый цвет) до 255 (черный цвет). Принтер может печатать с разрешающей способностью 600 dpi, но каждый напечатанный пиксел может быть либо черного цвета (когда есть тонер), либо белого цвета (когда нет тонера). Градации серого печататься не могут.
При печати таких изображений имеет место так называемая обработка полутонов (как при печати серийных плакатов). Изображение разбивается на ячейки, каждая по 6 х 6 пикселов. Каждая ячейка может содержать от 0 до 36 черных пикселов. Человеческому глазу ячейка с большим количеством черных пикселов кажется темнее, чем ячейка с меньшим количеством черных пикселов. Серые тона в диапазоне от 0 до 255 передаются следующим образом. Этот диапазон делится на 37 зон. Серые тона от 0 до 6 расположены в зоне 0, от 7 до 13 — в зоне 1 и т. д. (зона 36 немного меньше, чем другие, потому что 256 на 37 без остатка не делится). Когда встречаются тона зоны 0, ячейка остается белой. Тона зоны 1 передаются одним черным пикселом в ячейке. Тона зоны 2 — двумя пикселами в ячейке. Если фотография отсканирована с разрешающей способностью 600 dpi, после подобной обработки полутонов разрешающая способность напечатанного изображения снижается до 100 ячеек на дюйм. Данная величина называется градацией полутонов и измеряется вlpi (lines per inch — строки на дюйм).
