- •Содержание
- •1.Структура изучения дисциплины 6
- •2.1.11.Вопросы для самоконтроля 47
- •2.1.16.Вопросы для самоконтроля 53
- •3. Практикум по дисциплине 118
- •3.3. Основы алгоритмизации и программирования 121
- •4. Контрольная работа 132
- •Введение
- •1.Структура изучения дисциплины
- •1.1 Цель и задачи дисциплины
- •1.2. Методические рекомендации по изучению дисциплины Подраздел 2.1«Основы построения эвм» раздела 2 данного пособия
- •«Основы алгоритмизации и программирования»;
- •«Архитектура эвм»;
- •1.3.Глоссарий
- •1.4.Список рекомендуемых источников
- •1.5.Форма контроля
- •2.Теоретические основы организации и функционирования эвм
- •2.1. Основы построения эвм
- •2.1.1.Основные понятия и методы теории информации и кодирования
- •2.1.2.Формы, свойства, показатели качества информации
- •2.1.3.Меры и единицы представления, измерения и хранения информации
- •2.1.4. Системы счисления
- •Двоичная арифметика
- •Разрядные сетки эвм
- •Прямой и обратный коды
- •2.1.5.Кодирование данных в эвм
- •Кодирование текстовой информации
- •Кодирование чисел
- •Кодирование графической информации
- •Кодирование звуковой информации
- •Кодирование видеоинформации
- •2.1.6. Основные понятия алгебры логики
- •2.1.7.Логические основы эвм
- •2.1.8.Вопросы для самоконтроля
- •2.1.9. Архитектура эвм
- •Внешние устройства персонального компьютера:
- •Принципы фон Неймана
- •2.1.10. Состав и назначение основных элементов персонального компьютера
- •Запоминающие устройства: классификация, принцип работы, основные характеристики
- •Основные характеристики вычислительной техники
- •2.1.11.Вопросы для самоконтроля
- •2.1.12.Программные средства эвм
- •2.1.13.Классификация программного обеспечения
- •Системное программное обеспечение (спо)
- •Системы программирования
- •Прикладное программное обеспечение
- •Базовое программное обеспечение. Операционные системы (ос)
- •2.1.14.Понятие файла, файловой структуры
- •2.1.15. Операционная система ms Windows
- •2.1.16.Вопросы для самоконтроля
- •Классификация программного обеспечения.
- •2.1.17.Основы алгоритмизации и программирования
- •2.1.18. Понятие алгоритма
- •2.1.19. Основные типы алгоритмов
- •Линейные алгоритмы
- •Алгоритмы ветвлений
- •Циклические алгоритмы
- •2.1.20. Основные конструкции языка Turbo-Pascal
- •2.1.21. Структура программы на языке Паскаль
- •2.1.22. Основные операторы языка Паскаль Оператор присваивания
- •2.1.23. Операторы передачи управления
- •2.1.24. Программирование. Циклы
- •2.1.25. Программирование. Массивы
- •2.1.26.Этапы развития, принципы построения и классификация средств вт Этапы развития компьютеров
- •Поколения компьютеров - история развития вычислительной техники
- •Можно выделить общие тенденции развития компьютеров:
- •Нулевое поколение. Механические вычислители
- •Первое поколение. Компьютеры на электронных лампах (194х-1955)
- •Примеры компьютеров:
- •Второе поколение. Компьютеры на транзисторах (1955-1965г.Г.)
- •Третье поколение. Компьютеры на интегральных схемах (1965-1980)
- •Четвертое поколение. Компьютеры на больших (и сверхбольших) интегральных схемах (1980-…)
- •Пятое поколение эвм
- •Типы компьютеров: персональные, микроконтроллеры, серверы, мейн- фреймы и др.
- •Персональные компьютеры (пк)
- •Игровые компьютеры
- •Карманные компьютеры
- •Микроконтроллеры
- •Серверы
- •Мейнфреймы
- •Суперкомпьютеры
- •Рабочие станции
- •История развития персональных компьютеров
- •Основные принципы работы компьютера
- •2.2. Устройства управления процессами эвм
- •Устройство процессора и его назначение Описание и назначение процессоров
- •Устройство процессора
- •Работа процессора
- •Характеристики процессора
- •2.3. Память эвм Запоминающие устройства: классификация, принцип работы, основные характеристики
- •Оперативная память компьютера (озу, ram)
- •Назначение озу
- •Особенности работы озу
- •Логическое устройство оперативной памяти
- •Типы оперативной памяти
- •Вид модуля оперативной памяти
- •Разделы жесткого диска
- •2.4.Устройства ввода – вывода, периферийные устройства эвм Контроллеры и шина
- •Терминалы
- •Клавиатуры
- •Мониторы с электронно-лучевой трубкой
- •Жидкокристаллические мониторы
- •Принтеры
- •Монохромные принтеры
- •Цветные принтеры
- •Телекоммуникационное оборудование
- •Цифровые абонентские линии
- •Цифровые фотокамеры
- •3. Практикум по дисциплине
- •3.1. Арифметические операции в двоичной системе счисления
- •3.2. Построение таблиц истинности для логических формул
- •3.3. Основы алгоритмизации и программирования
- •Двумерные массивы
- •4. Контрольная работа
- •Системы счисления.
- •4.1. Рекомендации по выполнению контрольной работы
- •Раздел 3 контрольной работы должен включать:
- •4.2. Задания контрольной работы
- •4.2.1. Задание 1. Перевод чисел из одной системы счисления в другую
- •4.2.2.Задание 2. Алгебра логики
- •4.2.3.Задание 3. Основы алгоритмизации и программирования
- •Задание 3.1. Линейный алгоритм
- •Задание 3.2. Алгоритмы ветвления
- •Задание 3.3. Алгоритмы. Циклы
- •Задание 3.4. Одномерные массивы
- •Задание 3.5. Двумерные массивы
Мониторы с электронно-лучевой трубкой
Монитор представляет собой корпус, содержащий электронно-лучевую трубку (ЭЛТ) и ее источники питания. В состав электронно-лучевой трубки входит электронная пушка, которая выстреливает поток электронов на экран, изнутри лицевой части трубки покрытый люминесцентным слоем. Цветные мониторы содержат три электронные пушки: одну для красного, вторую для зеленого и третью для синего цвета. При горизонтальной развертке пучок электронов (луч) развертывается по экрану примерно за 50 мкс, образуя почти горизонтальную строку на экране. Затем луч совершает горизонтальный обратный ход к левому краю, чтобы начать построение следующей строки развертки. Устройство, которое так, строку за строкой, строит изображение, называется устройством растровой развертки. Горизонтальная развертка контролируется линейно возрастающим напряжением, которое воздействует на пластины горизонтального отклонения, расположенные слева и справа от электронной пушки. Вертикальная развертка контролируется более медленно возрастающим напряжением, которое воздействует на пластины вертикального отклонения, расположенные под и над электронной пушкой. После определенного количества циклов развертки (от 400 до 1000) напряжение на пластинах вертикального и горизонтального отклонения спадает, и луч возвращается в верхний левый угол экрана. Жидкокристаллические мониторы
Электронно-лучевые трубки слишком громоздкие и тяжелые для использования в портативных компьютерах, поэтому для экранов портативных компьютеров необходима совершенно другая технология. Здесь чаще всего используются жидкокристаллические дисплеи. Соответствующая технология чрезвычайно сложна, имеет несколько вариантов воплощения и быстро меняется, тем не менее мы постараемся сделать ее описание по возможности кратким и простым.
Жидкокристаллические мониторы
Жидкие кристаллы представляют собой вязкие органические молекулы, которые двигаются, как молекулы жидкостей, но при этом имеют структуру, как у кристалла. Они были открыты австрийским ботаником Рейницером (Rheinitzer) в 1888 году и впервые стали применяться при изготовлении разнообразных дисплеев (для калькуляторов, часов и т. п.) в 1960 году. Когда молекулы расположены в одну линию, оптические качества кристалла зависят от направления и по¬ляризации воздействующего света. При использовании электрического поля линия молекул, а следовательно, и оптические свойства меняются. Если воздей¬ствовать лучом света на жидкий кристалл, интенсивность света, исходящего из самого жидкого кристалла, может контролироваться с помощью электричества. Это свойство используется при создании индикаторных дисплеев.
Экран жидкокристаллического дисплея состоит из двух стеклянных параллельно расположенных пластин, между которыми находится герметичное проcтранство с жидким кристаллом. К обеим пластинам подсоединяются прозрачные электроды. Искусственный или естественный свет за задней пластиной освещает экран изнутри. Электроды, подведенные к пластинам, используются для того, чтобы создать электрические поля в жидком кристалле. На различные части экрана воздействует разное напряжение, что и позволяет строить изображение. К передней и задней пластинам экрана приклеиваются поляроиды, поскольку технологически дисплей требует поляризованного света.
Мыши
Мышь — это устройство в маленьком пластиковом корпусе, располагающееся на столе рядом с клавиатурой. Если двигать мышь по столу, указатель на экране тоже будет двигаться, что дает возможность навести его на тот или иной элемент экрана. У мыши есть одна, две или три кнопки, нажатие которых дает возможность пользователям выбирать пункты меню. Было очень много споров по поводу того, сколько кнопок должно быть у мыши. Начинающим пользователям достаточно было одной кнопки (в этом случае перепутать кнопки невозможно), но их более опытные коллеги предпочитали несколько кнопок, чтобы можно было на экране выполнять сложные действия.
Существует три типа мышей: механические, оптические и оптомеханические. У мышей первого типа снизу располагаются резиновые колесики, оси которых расположены перпендикулярно друг к другу. Если мышь передвигается в вертикальном направлении, то вращается одно колесо, а если в горизонтальном, то другое. Каждое колесико приводит в действие резистор (потенциометр). Если измерить изменения сопротивления, можно узнать, на сколько провернулось колесико, и таким образом вычислить, на какое расстояние передвинулась мышь в каждом направлении. В последние годы такие мыши практически полностью вытеснены новой моделью, в которой вместо колес используется шарик, слегка выступающий снизу (рисунок 15 ).
Указатель
мыши
Рисунок
15
-
Использование
мыши для выбора пункта меню
Следующий тип — оптическая мышь. У нее нет ни колес, ни шарика. Вместо этого в нижней части мыши располагаются светодиод и фотодетектор. Оптическая мышь перемещается по поверхности особого пластикового коврика, который содержит прямоугольную решетку с линиями, близко расположенными друг к другу. Когда мышь двигается по решетке, фотодетектор воспринимает пересечения линий за счет изменения количества света, отражаемого от светодио- да. Электронное устройство внутри мыши подсчитывает количество пересеченных линий в каждом направлении.
Третий тип — оптомеханическая мышь. У нее, как и у более современной механической мыши, есть шарик, который вращает два колесика, расположенные перпендикулярно друг к другу. Колесики связаны с кодировщиками. В каждом кодировщике имеются прорези, через которые проходит свет. Когда мышь двигается, колесики вращаются и световые импульсы воздействуют на детекторы каждый раз, когда между светодиодом и детектором появляется прорезь. Число воспринятых детектором импульсов пропорционально расстоянию.
Хотя мыши можно устанавливать по-разному, обычно используется следующая схема: компьютеру передается последовательность из 3 байт каждый раз, когда мышь проходит определенное минимальное расстояние (например, 0,01 дюйма). Обычно эти характеристики передаются в последовательном потоке битов. Первый байт содержит целое число, которое указывает, на какое расстояние переместилась мышь в направлении х с прошлого раза. Второй байт содержит ту же информацию для направленияу.Третий байт указывает на текущее состояние кнопок мыши. Иногда для каждой координаты используются 2 байта.
Программное обеспечение принимает эту информацию по мере поступления и преобразует относительные движения, передаваемые мышью, в абсолютную позицию. Затем оно отображает стрелочку на экране в позиции, соответствующей расположению мыши. Если указать стрелочкой на определенный элемент экрана и щелкнуть кнопкой мыши, компьютер может вычислить, какой именно элемент на экране выбран.
