- •Вариант 2 Контрольная работа № 1
- •Первый закон термодинамики. Формулировки, математическая запись. Смысл понятий «внутренняя энергия», «работа», «теплота».
- •Энергия Гиббса (изобарно-изотермический потенциал) как критерий возможности и направленности процесса в закрытой системе.
- •Принцип непрерывности и соответствия. Анализ на их основе кривых охлаждения одно- и двухкомпонентных систем.
- •Нерастворяющиеся жидкости. Перегонка с водяным паром. Ароматные воды.
- •Рассчитайте число степеней свободы для равновесной системы
- •Вычислите давление пара 20%-ного раствора глюкозы с6н12о6 при 250 с. Давление паров воды при данной температуре 3167,73 н/м2.
- •Контрольная работа № 2
- •Теория электролитической диссоциации Аррениуса. История появления. Основные положения. Достоинства и недостатки. Область применения.
- •Кондуктометрическое титрование: сущность метода, виды кривых титрования, расчет концентрации раствора.
- •Электроды сравнения. Хлорсеребряный электрод: устройство, работа, определение потенциалов электродов с его помощью.
- •Порядок реакции. Вывод и анализ кинетического уравнения первого порядка.
- •Общие положения и закономерности катализа.
- •Определите степень электролитической диссоциации фтористоводородной кислоты в 0,1 м растворе. Константа диссоциации кислоты равна 7,4∙10-4.
- •Период полураспада радиоактивного фосфора 14,3 дня. За какое время активность препарата атф, меченного по фосфору, уменьшится в 5 раз?
- •Контрольная работа №3
- •Поверхностная энергия Гиббса, ее связь с поверхностным натяжением. Методы определения поверхностного натяжения.
- •Обосновать необходимость эмульгатора в эмульсиях. Классификация эмульгаторов, механизм их действия. Правило Банкрофта.
- •Полимерные электролиты. Изоэлектрическая точка белков. Влияние рН на свойства белков.
- •Осмотическое давление растворов вмс. Уравнение Галлера. Применение осмометрии.
- •Контрольная работа № 4
- •Получение дисперсных систем методом диспергирования. Особенности механического, ультразвукового диспергирования и электрораспыления.
- •Теория строения дэс по Штерну. Строение мицеллы. Электрокинетический и термодинамический потенциалы, факторы, от которых они зависят.
- •Суспензия как дисперсная система, свойства (молекулярно-кинетические, электрокинетические, оптические), устойчивость. Использование в фармации.
- •Осмотическое давление коллоидных растворов.
- •Золь золота получен восстановлением золотой кислоты hAuO2 танином по реакции
- •Почему аэрозоли можно использовать в качестве дымовых завес?
- •Использование коллоидно-химических процессов (седиментация, флотация, коагуляция, флокуляция) для очистки сточных вод.
Контрольная работа № 4
Получение дисперсных систем методом диспергирования. Особенности механического, ультразвукового диспергирования и электрораспыления.
Диспергирование жидкостей обычно называют распылением, если оно происходит в газовой фазе, и эмульгированием, когда его проводят в другой жидкости, несмешивающейся с первой.
Методы диспергирования
– механическое диспергирование – осуществляется под действием внешней механической работы. Способы: истирание, раздавливание, раскалывание, распыление, барботаж (пропускание струи воздуха через жидкость), встряхивание, взрыв, действие звуковых и ультразвуковых волн. Таким методом получают муку, сахарную пудру, какао порошок, пряности, молотый кофе и другие. Размер частиц, получаемых этим методом, к.п. довольно большой, не менее 100 нм. Оборудование: ступки, мельницы, дробилки различных типов, жернова.
– электрическое диспергирование – основан на образовании вольтовой дуги между электродами из распыляемого металла, помещенными в охлаждаемую ДС. Металлы при температуре вольтовой дуги испаряются, а затем в холодной ДС конденсируются. Таким методом получают в основном гидрозоли металлов (дисперсионной средой является вода), например серебра, золота и платины.
– диспергирование ультразвуком – основано на воздействии при помощи ультразвуковых колебаний с частотой выше 20 тыс. в 1 с., не улавливаемых человеческим ухом, эффективно лишь для веществ с небольшой прочностью. К ним относят серу, графит, крахмал, каучук, желатин и др.
К физико-химическому диспергированию относится метод пептизации. Он заключается в переводе свежеприготовленных рыхлых осадков в коллоидный раствор под действием специальных стабилизирующих добавок (пептизаторов – электролиты, растворы ПАВ). Действие пептизаторазаключается в том, что частицы осадка отделяются друг от друга и переходят во взвешенное состояние, образуя золь. Таким методом можно получить, например, гидрозоль гидроксида железа (III). Метод пептизации можно применять только для свежеприготовленных осадков, так как в процессе хранения происходят процессы рекристаллизации и старения, приводящие к сращиванию частиц друг с другом. Размеры частиц получаемых данным методом около 1 нм.
Классификации дисперсных систем: а) по степени дисперсности; б) по агрегатному состоянию дисперсной фазы и дисперсионной среды; в) по интенсивности взаимодействия частиц дисперсной фазы; г) по интенсивности взаимодействия частиц дисперсной фазы и дисперсионной среды.
Коллоидные системы относятся к дисперсным системам – системам, где одно вещество в виде частиц различной величины распределено в другом. Дисперсные системы чрезвычайно многообразны; практически всякая реальная система является дисперсной. Дисперсные системы классифицируют прежде всего по размеру частиц дисперсной фазы (или степени дисперсности); кроме того, их разделяют на группы, различающиеся по природе и агрегатному состоянию дисперсной фазы и дисперсионной среды.
Если дисперсионной средой является жидкость, а дисперсной фазой – твердые частицы, система называется взвесью или суспензией; если дисперсная фаза представляет собой капельки жидкости, то систему называют эмульсией
По степени дисперсности выделяют обычно следующие классы дисперсных систем:
Грубодисперсные системы – системы, размер частиц дисперсной фазы в которых превышает 10-7 м.
Коллоидные системы – системы, размер частиц дисперсной фазы в которых составляет 10-7 – 10-9 м. Коллоидные системы характеризуются гетерогенностью, т.е. наличием поверхностей раздела фаз и очень большим значением удельной поверхности дисперсной фазы. Это обусловливает значительный вклад поверхностной фазы в состояние системы и приводит к появлению у коллоидных систем особых, присущих только им, свойств.
По степени дисперсности (по размеру коллоидных частиц):
– грубодисперсные (>10-3 см) – частицы не проходят через фильтр, оседают в гравитационном поле (под действием силы тяжести), видны в обычный световой микроскоп;
– микрогетерогенные (10-5–10-3 см);
– ультрамикрогетерогенные (10-7–10-5 см) – собственно коллоидные частицы.
По характеру взаимодействия между частицами
– золи – бесструктурные коллоидные системы, обладающие текучестью, и содержащие частицы свободные от непосредственных связей друг с другом
– гели – структурированные коллоидные системы частично или полностью потерявшие текучесть, содержащие частицы связанные друг с другом межмолекулярными связями.
По интенсивности межфазового взаимодействия, т.е. по интенсивности межмолекулярных сил взаимодействия между дисперсной фазой и дисперсионной средой. Характерно только для систем с жидкой дисперсионной средой.
– лиофильные – сильные межмолекулярные взаимодействия между частицами, это все растворы ВМС (бульон паштет, сырковая масса, расплавленный жир с белковыми частицами). Образуются самопроизвольно
– лиофобные – слабые взаимодействия, эмульсии, суспензии и золи. Образуются с затратой энергии и термодинамически неустойчивы (самопроизвольно разделяются на ДФ и ДС).
Иногда выделяют молекулярно(ионно)-дисперсные системы, которые, строго говоря, являются истинными растворами, т.е. гомогенными системами, поскольку в них нет поверхностей раздела фаз.
Коллоидные системы, в свою очередь, подразделяются на две группы, резко отличные по характеру взаимодействий между частицами дисперсной фазы и дисперсионной среды – лиофобные коллоидные растворы (золи) и растворы высокомолекулярных соединений (ВМС), которые ранее называли лиофильными коллоидами.
