- •Вариант 2 Контрольная работа № 1
- •Первый закон термодинамики. Формулировки, математическая запись. Смысл понятий «внутренняя энергия», «работа», «теплота».
- •Энергия Гиббса (изобарно-изотермический потенциал) как критерий возможности и направленности процесса в закрытой системе.
- •Принцип непрерывности и соответствия. Анализ на их основе кривых охлаждения одно- и двухкомпонентных систем.
- •Нерастворяющиеся жидкости. Перегонка с водяным паром. Ароматные воды.
- •Рассчитайте число степеней свободы для равновесной системы
- •Вычислите давление пара 20%-ного раствора глюкозы с6н12о6 при 250 с. Давление паров воды при данной температуре 3167,73 н/м2.
- •Контрольная работа № 2
- •Теория электролитической диссоциации Аррениуса. История появления. Основные положения. Достоинства и недостатки. Область применения.
- •Кондуктометрическое титрование: сущность метода, виды кривых титрования, расчет концентрации раствора.
- •Электроды сравнения. Хлорсеребряный электрод: устройство, работа, определение потенциалов электродов с его помощью.
- •Порядок реакции. Вывод и анализ кинетического уравнения первого порядка.
- •Общие положения и закономерности катализа.
- •Определите степень электролитической диссоциации фтористоводородной кислоты в 0,1 м растворе. Константа диссоциации кислоты равна 7,4∙10-4.
- •Период полураспада радиоактивного фосфора 14,3 дня. За какое время активность препарата атф, меченного по фосфору, уменьшится в 5 раз?
- •Контрольная работа №3
- •Поверхностная энергия Гиббса, ее связь с поверхностным натяжением. Методы определения поверхностного натяжения.
- •Обосновать необходимость эмульгатора в эмульсиях. Классификация эмульгаторов, механизм их действия. Правило Банкрофта.
- •Полимерные электролиты. Изоэлектрическая точка белков. Влияние рН на свойства белков.
- •Осмотическое давление растворов вмс. Уравнение Галлера. Применение осмометрии.
- •Контрольная работа № 4
- •Получение дисперсных систем методом диспергирования. Особенности механического, ультразвукового диспергирования и электрораспыления.
- •Теория строения дэс по Штерну. Строение мицеллы. Электрокинетический и термодинамический потенциалы, факторы, от которых они зависят.
- •Суспензия как дисперсная система, свойства (молекулярно-кинетические, электрокинетические, оптические), устойчивость. Использование в фармации.
- •Осмотическое давление коллоидных растворов.
- •Золь золота получен восстановлением золотой кислоты hAuO2 танином по реакции
- •Почему аэрозоли можно использовать в качестве дымовых завес?
- •Использование коллоидно-химических процессов (седиментация, флотация, коагуляция, флокуляция) для очистки сточных вод.
Кондуктометрическое титрование: сущность метода, виды кривых титрования, расчет концентрации раствора.
Кондуктометрическое титрование основано на измерении электропроводности или электросопротивления растворов в процессе титрования. Для этой цели применяют два одинаковых инертных электрода, расположенных на постоянном расстоянии друг от друга, и мостик переменного тока. Кривые титрования, представляющие собой зависимость х от кол-ва прибавленного реагента (титранта), имеют излом в точке эквивалентности. При титровании смесей электролитов число изломов равно числу определяемых компонентов, взаимодействующих с титрантом.
При титровании определяемого вещества раствором реактива получаются малодиссоциирующие или малорастворимые соединения, вследствие чего электрическая проводимость титруемого раствора заметно понижается. При этом минимум электрической проводимости на кривой наблюдается в конце титрования и соответствует точке эквивалентности
Кривые кондуктометрического титрования. Если отложить по оси
абсцисс значения объемов прибавляемого титрованного раствора кислоты
(в миллилитрах), а по оси ординат — величины электропроводности, получится характерная кривая кондуктометрического титрования.
Точка эквивалентности при этом титровании совпадает с точкой минимума электропроводности.
Другой вид имеет кривая кондуктометрического титрования нитрата серебра хлоридом бария.
В этом случае в процессе титрования не наблюдается заметного изменения электропроводности, но после достижения точки
эквивалентности прибавление даже незначительного избытка хлорида бария вызывает повышение электропроводности. Кривые третьего типа получаются при титровании слабых
кислот сильными основаниями или слабых оснований сильными кислотами.
Здесь электропроводность до точки эквивалентности возрастает менее резко, чем после ее достижения. Таким образом, форма получаемой кривой кондуктометрического титрования зависит от типа титрования, а изменения электропроводности обусловлены различной подвижностью ионов (в см/сек) в одинаковых условиях опыта.
Расчет концентрации происходит по закону эквивалентности.
С (титранта)*V(титранта)= С(опр. в-ва)*V(опр.в-ва)
Электроды сравнения. Хлорсеребряный электрод: устройство, работа, определение потенциалов электродов с его помощью.
Для определения электродного потенциала элемента необходимо измерить ЭДС гальванического элемента, составленного из испытуемого электрода и электрода с точно известным потенциалом – электрода сравнения. В качестве примеров рассмотрим водородный, каломельный и хлорсеребряный электроды.
Водородный электрод представляет собой платиновую пластинку, омываемую газообразным водородом, погруженную в раствор, содержащий ионы водорода. Адсорбируемый платиной водород находится в равновесии с газообразным водородом; схематически электрод изображают следующим образом: Рt, Н2 / Н+
Электрохимическое равновесие на электроде можно рассматривать в следующем виде:
2Н+ + 2е- ––> Н2
Потенциал водородного электрода зависит от активности ионов Н+ в растворе и давления водорода; потенциал стандартного водородного электрода (с активностью ионов Н+ 1 моль/л и давлением водорода 101.3 кПа) принят равным нулю. Поэтому для электродного потенциала нестандартного водородного электрода можно записать:
Каломельный электрод. Работа с водородным электродом довольно неудобна, поэтому в качестве электрода сравнения часто используется более простой в обращении каломельный электрод, величина электродного потенциала которого относительно стандартного водородного электрода точно известна и зависит только от температуры. Каломельный электрод состоит из ртутного электрода, помещенного в раствор КСl определенной концентрации и насыщенный каломелью Hg2Сl2:
Нg / Нg2Сl2, КСl
Каломельный электрод обратим относительно анионов хлора и уравнение Нернста для него имеет вид:
Хлорсеребряный электрод. В качестве электрода сравнения используют также другой электрод второго рода – хлорсеребряный, представляющий собой серебряную проволоку, покрытую хлоридом серебра и помещённую в раствор хлорида калия. Хлорсеребряный электрод также обратим относительно анионов хлора:
Аg / АgСl, КСl
Величина потенциала хлорсеребряного электрода зависит от активности ионов хлора; данная зависимость имеет следующий вид:
