- •1.Комплексные числа: основные понятия. Геометрическое изображение. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- •2.Арифметические действия над комплексными числами. (сложение-вычитание, умножение, деление.
- •4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
- •5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
- •6.Производная функции, ее физический и геометрический смысл. Уравнение касательной.
- •7.Производная сложной функции. Логарифмическое дифференцирование. Производная неявной функции. Дифференцирование параметрической функции.
- •Логарифмическое дифференцирование. Для функций вида для упрощения нахождения производной рациональнее использовать логарифмическое дифференцирование.
- •8.Дифференциал функции, его аналитический и геометрический смысл. Применение дифференциала для приближенных вычислений.
- •9.Дифференциальные теоремы о среднем (теоремы Ролля, Лагранжа).
- •10. Теорема лопиталя.
- •Теоремы о выпуклости функции и точках перегиба
- •1 3. Первообразная функции:
- •1 4. Алгебраические многочлены и рациональные дроби
- •1 5. Интегрирование иррациональных функций. Интегрирование некоторых тригонометрических выражений.
- •16. Определенный интеграл
- •Б) , если - нечетная функция. Эти утверждения наглядно иллюстрируются геометрически (рис. 3).
- •17.Несобственный интеграл.
- •19.Матрицы. Основные понятия . Действия над матрицами.
- •20.Определители: основные понятия. Свойства определителей. Вычисление определителей.
- •21. Невырожденные матрицы: основные понятия. Ранг матрицы.
- •22. Обратная матрица. Матричные уравнения.
- •23 Системы линейных уравнений: основные понятия, решение систем линейных уравнений.
- •24.Решение невырожденных линейных систем. Формулы Крамера.
- •2 5.Решение систем линейных уравнений методом Гаусса.
- •26. Системы однородных линейных уравнений. Фундаментальная система решений.
- •27.Линейные операции над векторами. Проекция вектора на ось, разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы. Действия над векторами.
- •Формула вычисления направляющих косинусов вектора для плоских задач
- •28.Скалярное произведение векторов и его свойства.
- •Формула скалярного произведения векторов для плоских задач
- •29. Векторное произведение векторов и его свойства.
- •Свойства векторного произведения векторов
- •30. Система координат на плоскости, основные понятия. Полярные координаты.
- •Полярная система координат.
- •31.Расстояние между двумя точками на плоскости. Деление отрезка в данном отношении.
- •Деление отрезка в данном отношении
- •33.Уравнение прямой в отрезках, нормальное уравнение прямой. Расстояние от заданной точки до прямой.
- •34.Угол между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •35.Общее уравнение алоскости.
- •Уравнение плоскости в отрезках
- •Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
- •Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
- •3 6. Каноническое уравнение прямой в пространстве.
- •37.Общее уравнение линии второго порядка. Каноническое уравнение окружности.
- •38.Эллипс, каноническое уравнение эллипса. Эксцентриситет эллипса.
- •39.Гипербола, каноническое уравнение гиперболы. Эксцентриситет гиперболы. Асимптоты гиперболы.
- •40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
- •41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
- •42.Производные и дифференциалы функции нескольких переменных.
- •43.Необходимое и достаточное условие экстремума функции двух переменных
- •44.Касательная плоскость и нормаль к поверхности
- •4 5.Знакопостоянные числовые ряды. Необходимый признак сходимости числового ряда. Признаки сравнения. Признаки сходимости: Даламбера, радикальный признак Коши, интегральный признак Коши.
- •46. Знакопеременные числовые ряды Условная сходимость. Признак Лейбница.
- •47.Степенные ряды. Радиус сходимости. Дифференцирование и интегрирование степенных рядов.
- •48.Разложение функции в степенные ряды. Ряды Тейлора и Маклорена.
- •51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
- •52.Уравнения в полных дифференциалах.
- •53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
- •54. Линейные однородные дифференциальные уравнения второго порядка.
- •55. Решение линейных неоднородных дифференциальных уравнений второго порядка.
- •56. Решение нормальных систем дифференциальных уравнений с постоянными коэффициентами матричным способом. (Решение систем дифференциальных уравнений –практика).
- •57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
- •59.Теорема сложения вероятностей несовместных событий. Теорема умножения вероятностей для независимых и зависимых событий.
- •60.Формула полной вероятности. Вероятность гипотез. Формула Байеса.
- •61. Повторные испытания. Формула Бернулли. Теоремы Лапласа. Формула Пуассона.
- •Теоремы Муавра-Лапласа
- •Формула Пуассона
- •62.Случайные величины: основные понятия, дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины.
- •65.Нормальное распределение. Кривая Гаусса. Влияние параметров µ и σ на форму кривой Гаусса. Вероятность попадания нормально распределенной случайной величины в заданный интервал Правило «трех сигм».
5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
Функция
называется непрерывной
в точке
,
если:
функция определена в точке
и
ее окрестности;существует конечный предел функции в точке ;
это предел равен значению функции в точке , т.е.
При нахождении предела функции
,
которая является непрерывной, можно
переходить к пределу под знаком функции,
то есть
Функция, непрерывная во всех точках некоторой области, называется непрерывной в этой области.
Функция
называется непрерывной
справа в точке
,
если
.
Функция
называется непрерывной
слева в точке
,
если
.
Функция
называется непрерывной
в интервале
,
если она непрерывна в каждой точке этого
интервала.
Функция
называется непрерывной
на отрезке
,
если она является непрерывной в
интервале
,
непрерывной справа в точке
,
то есть
и
непрерывной слева в точке
,
то есть
.Свойства
функций непрерывных на отрезке:
1.Теорема Вейерштрасса. Если функция непрерывна на отрезке, то она достигает на этом отрезке свои наибольшее и наименьшее значения.
2.Непрерывная на отрезке функция является ограниченной на этом отрезке.
3.Теорема
Больцано-Коши. Если
функция
является
непрерывной на отрезке
и
принимает на концах этого отрезка
неравные между собой значения, то
есть
,
,
то на этом отрезке функция принимает и
все промежуточные значения между
и
.
4.Если функция
,
которая непрерывна на некотором
отрезке
,
принимает на концах отрезка значения
разных знаков, то существует такая
точка
такая,
что
Точка , в которой нарушено хотя бы одно из трех условий непрерывности функции, а именно:
1.функция определена в точке и ее окрестности;
2.существует конечный предел функции в точке ;
3.это предел равен значению функции в точке , т.е.
называется точкой разрыва функции.
Точка разрыва
первого рода. Если
в точке
существуют
конечные пределы
и
,
такие, что
,
то точка
называется точкой
разрыва первого рода.
Точка разрыва второго рода. Если хотя б один из пределов или не существует или равен бесконечности, то точка называется точкой разрыва второго рода.
Точка устранимого
разрыва. Если
существуют левый
и правый пределы функции в
точке и они равны друг другу, но не
совпадают со значением функции
в
точке
:
или
функция
не
определена в точке
,
то точка
называется точкой
устранимого разрыва.
Теорема1. Пусть
заданы две функции
и
,
непрерывные на некотором множестве
.
Сумма, произведение и частное (при
условии, что
)
является также непрерывной функцией
на рассматриваемом множестве.
Пусть функция
задана
на множестве
,
а
-
множество значений этой функции. Пусть
на множестве
задана
функция
,
которая называется композицией
функций (или сложной
функцией)
.
Теорема2. Пусть
функция
непрерывна
в точке
,
а функция
непрерывна
в точке
.
Тогда композиция этих функций
непрерывна
в точке
.
Теорема3. Если
функция
является непрерывной
и строго монотонной на отрезке
,
которые лежит на оси абсцисс, то и
обратная функция
также
непрерывна и монотонна на некотором
отрезке
оси
ординат.
