- •1.Комплексные числа: основные понятия. Геометрическое изображение. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- •2.Арифметические действия над комплексными числами. (сложение-вычитание, умножение, деление.
- •4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
- •5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
- •6.Производная функции, ее физический и геометрический смысл. Уравнение касательной.
- •7.Производная сложной функции. Логарифмическое дифференцирование. Производная неявной функции. Дифференцирование параметрической функции.
- •Логарифмическое дифференцирование. Для функций вида для упрощения нахождения производной рациональнее использовать логарифмическое дифференцирование.
- •8.Дифференциал функции, его аналитический и геометрический смысл. Применение дифференциала для приближенных вычислений.
- •9.Дифференциальные теоремы о среднем (теоремы Ролля, Лагранжа).
- •10. Теорема лопиталя.
- •Теоремы о выпуклости функции и точках перегиба
- •1 3. Первообразная функции:
- •1 4. Алгебраические многочлены и рациональные дроби
- •1 5. Интегрирование иррациональных функций. Интегрирование некоторых тригонометрических выражений.
- •16. Определенный интеграл
- •Б) , если - нечетная функция. Эти утверждения наглядно иллюстрируются геометрически (рис. 3).
- •17.Несобственный интеграл.
- •19.Матрицы. Основные понятия . Действия над матрицами.
- •20.Определители: основные понятия. Свойства определителей. Вычисление определителей.
- •21. Невырожденные матрицы: основные понятия. Ранг матрицы.
- •22. Обратная матрица. Матричные уравнения.
- •23 Системы линейных уравнений: основные понятия, решение систем линейных уравнений.
- •24.Решение невырожденных линейных систем. Формулы Крамера.
- •2 5.Решение систем линейных уравнений методом Гаусса.
- •26. Системы однородных линейных уравнений. Фундаментальная система решений.
- •27.Линейные операции над векторами. Проекция вектора на ось, разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы. Действия над векторами.
- •Формула вычисления направляющих косинусов вектора для плоских задач
- •28.Скалярное произведение векторов и его свойства.
- •Формула скалярного произведения векторов для плоских задач
- •29. Векторное произведение векторов и его свойства.
- •Свойства векторного произведения векторов
- •30. Система координат на плоскости, основные понятия. Полярные координаты.
- •Полярная система координат.
- •31.Расстояние между двумя точками на плоскости. Деление отрезка в данном отношении.
- •Деление отрезка в данном отношении
- •33.Уравнение прямой в отрезках, нормальное уравнение прямой. Расстояние от заданной точки до прямой.
- •34.Угол между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •35.Общее уравнение алоскости.
- •Уравнение плоскости в отрезках
- •Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
- •Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
- •3 6. Каноническое уравнение прямой в пространстве.
- •37.Общее уравнение линии второго порядка. Каноническое уравнение окружности.
- •38.Эллипс, каноническое уравнение эллипса. Эксцентриситет эллипса.
- •39.Гипербола, каноническое уравнение гиперболы. Эксцентриситет гиперболы. Асимптоты гиперболы.
- •40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
- •41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
- •42.Производные и дифференциалы функции нескольких переменных.
- •43.Необходимое и достаточное условие экстремума функции двух переменных
- •44.Касательная плоскость и нормаль к поверхности
- •4 5.Знакопостоянные числовые ряды. Необходимый признак сходимости числового ряда. Признаки сравнения. Признаки сходимости: Даламбера, радикальный признак Коши, интегральный признак Коши.
- •46. Знакопеременные числовые ряды Условная сходимость. Признак Лейбница.
- •47.Степенные ряды. Радиус сходимости. Дифференцирование и интегрирование степенных рядов.
- •48.Разложение функции в степенные ряды. Ряды Тейлора и Маклорена.
- •51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
- •52.Уравнения в полных дифференциалах.
- •53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
- •54. Линейные однородные дифференциальные уравнения второго порядка.
- •55. Решение линейных неоднородных дифференциальных уравнений второго порядка.
- •56. Решение нормальных систем дифференциальных уравнений с постоянными коэффициентами матричным способом. (Решение систем дифференциальных уравнений –практика).
- •57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
- •59.Теорема сложения вероятностей несовместных событий. Теорема умножения вероятностей для независимых и зависимых событий.
- •60.Формула полной вероятности. Вероятность гипотез. Формула Байеса.
- •61. Повторные испытания. Формула Бернулли. Теоремы Лапласа. Формула Пуассона.
- •Теоремы Муавра-Лапласа
- •Формула Пуассона
- •62.Случайные величины: основные понятия, дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины.
- •65.Нормальное распределение. Кривая Гаусса. Влияние параметров µ и σ на форму кривой Гаусса. Вероятность попадания нормально распределенной случайной величины в заданный интервал Правило «трех сигм».
57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий.
Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита A,B,CA,B,C и т.д.
Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие AA — выпадение трех очков на первой игральной кости, событие BB — выпадание трех очков на второй кости. AA и BB — совместные события.
Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.
Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная — невозможным.
Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции.
События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.
Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. AA — появление красного шара при одном извлечении, BB
— появление белого шара, CC — появление шара с номером. События A,B,CA,B,C образуют полную группу совместных событий.
Введем понятие противоположного, или дополнительного, события. Под противоположным событием A понимается событие, которое обязательно должно произойти, если не наступило некоторое событие A. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий.
Операции над событиями
Суммой, или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.
Сумма событий SS
A,B,C,…,NA,B,C,…,N:
S=A+B+C+…+NS=A+B+C+…+N
Например, если событие AA есть попадание в цель при первом выстреле, событие BB — при втором, то событие C=A+BC=A+B есть попадание в цель вообще, безразлично, при каком выстреле.
Произведением, или пересечением, нескольких событий называется событие, состоящее в совместном появлении всех этих событий.
Произведение событий SS
A,B,C,…,NA,B,C,…,N
S=ABC…NS=ABC…N
Например, если событие AA есть попадание в цель при первом выстреле, событие BB — при втором, то событие C=ABC=AB состоит в том, что в цель попали при обоих выстрелах.
58. Классическое определение вероятности.
Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события.
Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.
Вероятность события AA будем обозначать символом P{A}P{A}.
Вероятность события AA равна отношению числа случаев mm, благоприятствующих ему, из общего числа nn единственно возможных, равновозможных и несовместных случаев к числу nn, т. е. P{A}=mn.P{A}=mn (1.1)
Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число nn, число случаев mm, благоприятствующих данному событию, и затем выполнить расчет по формуле (1.1).
Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):
1) Вероятность невозможного события равна 0;
2) Вероятность достоверного события равна 1;
3) Вероятность любого события заключена между 0 и 1;
4)
Вероятность события, противоположного
событию А,
