- •1.Комплексные числа: основные понятия. Геометрическое изображение. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- •2.Арифметические действия над комплексными числами. (сложение-вычитание, умножение, деление.
- •4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
- •5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
- •6.Производная функции, ее физический и геометрический смысл. Уравнение касательной.
- •7.Производная сложной функции. Логарифмическое дифференцирование. Производная неявной функции. Дифференцирование параметрической функции.
- •Логарифмическое дифференцирование. Для функций вида для упрощения нахождения производной рациональнее использовать логарифмическое дифференцирование.
- •8.Дифференциал функции, его аналитический и геометрический смысл. Применение дифференциала для приближенных вычислений.
- •9.Дифференциальные теоремы о среднем (теоремы Ролля, Лагранжа).
- •10. Теорема лопиталя.
- •Теоремы о выпуклости функции и точках перегиба
- •1 3. Первообразная функции:
- •1 4. Алгебраические многочлены и рациональные дроби
- •1 5. Интегрирование иррациональных функций. Интегрирование некоторых тригонометрических выражений.
- •16. Определенный интеграл
- •Б) , если - нечетная функция. Эти утверждения наглядно иллюстрируются геометрически (рис. 3).
- •17.Несобственный интеграл.
- •19.Матрицы. Основные понятия . Действия над матрицами.
- •20.Определители: основные понятия. Свойства определителей. Вычисление определителей.
- •21. Невырожденные матрицы: основные понятия. Ранг матрицы.
- •22. Обратная матрица. Матричные уравнения.
- •23 Системы линейных уравнений: основные понятия, решение систем линейных уравнений.
- •24.Решение невырожденных линейных систем. Формулы Крамера.
- •2 5.Решение систем линейных уравнений методом Гаусса.
- •26. Системы однородных линейных уравнений. Фундаментальная система решений.
- •27.Линейные операции над векторами. Проекция вектора на ось, разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы. Действия над векторами.
- •Формула вычисления направляющих косинусов вектора для плоских задач
- •28.Скалярное произведение векторов и его свойства.
- •Формула скалярного произведения векторов для плоских задач
- •29. Векторное произведение векторов и его свойства.
- •Свойства векторного произведения векторов
- •30. Система координат на плоскости, основные понятия. Полярные координаты.
- •Полярная система координат.
- •31.Расстояние между двумя точками на плоскости. Деление отрезка в данном отношении.
- •Деление отрезка в данном отношении
- •33.Уравнение прямой в отрезках, нормальное уравнение прямой. Расстояние от заданной точки до прямой.
- •34.Угол между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •35.Общее уравнение алоскости.
- •Уравнение плоскости в отрезках
- •Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
- •Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
- •3 6. Каноническое уравнение прямой в пространстве.
- •37.Общее уравнение линии второго порядка. Каноническое уравнение окружности.
- •38.Эллипс, каноническое уравнение эллипса. Эксцентриситет эллипса.
- •39.Гипербола, каноническое уравнение гиперболы. Эксцентриситет гиперболы. Асимптоты гиперболы.
- •40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
- •41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
- •42.Производные и дифференциалы функции нескольких переменных.
- •43.Необходимое и достаточное условие экстремума функции двух переменных
- •44.Касательная плоскость и нормаль к поверхности
- •4 5.Знакопостоянные числовые ряды. Необходимый признак сходимости числового ряда. Признаки сравнения. Признаки сходимости: Даламбера, радикальный признак Коши, интегральный признак Коши.
- •46. Знакопеременные числовые ряды Условная сходимость. Признак Лейбница.
- •47.Степенные ряды. Радиус сходимости. Дифференцирование и интегрирование степенных рядов.
- •48.Разложение функции в степенные ряды. Ряды Тейлора и Маклорена.
- •51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
- •52.Уравнения в полных дифференциалах.
- •53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
- •54. Линейные однородные дифференциальные уравнения второго порядка.
- •55. Решение линейных неоднородных дифференциальных уравнений второго порядка.
- •56. Решение нормальных систем дифференциальных уравнений с постоянными коэффициентами матричным способом. (Решение систем дифференциальных уравнений –практика).
- •57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
- •59.Теорема сложения вероятностей несовместных событий. Теорема умножения вероятностей для независимых и зависимых событий.
- •60.Формула полной вероятности. Вероятность гипотез. Формула Байеса.
- •61. Повторные испытания. Формула Бернулли. Теоремы Лапласа. Формула Пуассона.
- •Теоремы Муавра-Лапласа
- •Формула Пуассона
- •62.Случайные величины: основные понятия, дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины.
- •65.Нормальное распределение. Кривая Гаусса. Влияние параметров µ и σ на форму кривой Гаусса. Вероятность попадания нормально распределенной случайной величины в заданный интервал Правило «трех сигм».
53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
,
где p(x)
и g(x)
– непрерывные функции (постоянные, в
частности) – линейные ур-ия 1-го порядка.
Существует три
способа решения этого уравнения:
* метод интегрирующего множителя;
* метод введения двух функций (Бернулли);
* метод вариации постоянной (Лагранжа).
Использование интегрирующего множителя
Если линейное дифференциальное уравнение записано в стандартной форме:
то
интегрирующий множитель определяется
формулой:
.
Умножение
левой части уравнения на интегрирующий
множитель u(x) преобразует
ее в производную произведения
Общее
решение дифференциального уравнения
выражается в виде:
где C −
произвольная постоянная.
Метод вариации постоянной
Данный
метод аналогичен предыдущему подходу.
Сначала необходимо найти общее
решение однородного
уравнения:
.
Общее
решение однородного уравнения содержит
постоянную интегрирования C. Далее
мы заменяем константу C на
некоторую (пока еще неизвестную)
функцию C(x). Подставляя
это решение в неоднородное дифференциальное
уравнение, можно определить
функцию C(x).
Найдём
сначала общее решение ур-ия
,
т.е.
Разделяя
переменные, имеем:
,
Т.е.
.
Общее решение заданного уравнения ищем
в виде
.
Подставляя y
и
в данное уравнения, получим:
Отсюда
;
;
=> общее решение ур-ия
Уравнение
Бернулли является
одним из наиболее известных нелинейных
дифференциальных уравнений первого
порядка.
Оно записывается в виде
,
где
и
−
непрерывные функции.
Если m=0, то
уравнение Бернулли становится линейным
дифференциальным уравнением.
В случае когда m=1, уравнение
преобразуется в уравнение
с разделяющимися переменными.
В
общем случае, когда m≠0,1, уравнение
Бернулли сводится к линейному
дифференциальному уравнению с помощью
подстановки
.
Новое дифференциальное уравнение для функции z(x) имеет вид
и может быть решено способами, описанными выше.
54. Линейные однородные дифференциальные уравнения второго порядка.
Рассмотрим
линейное дифференциальное уравнение
вида
,
где
−
постоянные коэффициенты.
Для
каждого такого дифференциального
уравнения можно записать так
называемое характеристическое
уравнение:
.
Общее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которое в данном случае будет являться квадратным уравнением. Возможны следующие случаи:
Дискриминант характеристического квадратного уравнения положителен:
. Тогда
корни характеристического
уравнения
и
действительны
и различны. В этом случае общее решение
описывается функцией
,
где C1 и C2 −
произвольные действительные числа.Дискриминант характеристического квадратного уравнения равен нулю: D=0. Тогда корни действительны и равны. В этом случае говорят, что существует один корень k1 второго порядка. Общее решение однородного дифференциального уравнения имеет вид:
Дискриминант характеристического квадратного уравнения отрицателен: D<0. Такое уравнение имеет комплексно-сопряженные корни
. Общее
решение записывается в виде
Рассмотренные три случая удобно представить в виде таблицы:
|
