- •1.Комплексные числа: основные понятия. Геометрическое изображение. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- •2.Арифметические действия над комплексными числами. (сложение-вычитание, умножение, деление.
- •4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
- •5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
- •6.Производная функции, ее физический и геометрический смысл. Уравнение касательной.
- •7.Производная сложной функции. Логарифмическое дифференцирование. Производная неявной функции. Дифференцирование параметрической функции.
- •Логарифмическое дифференцирование. Для функций вида для упрощения нахождения производной рациональнее использовать логарифмическое дифференцирование.
- •8.Дифференциал функции, его аналитический и геометрический смысл. Применение дифференциала для приближенных вычислений.
- •9.Дифференциальные теоремы о среднем (теоремы Ролля, Лагранжа).
- •10. Теорема лопиталя.
- •Теоремы о выпуклости функции и точках перегиба
- •1 3. Первообразная функции:
- •1 4. Алгебраические многочлены и рациональные дроби
- •1 5. Интегрирование иррациональных функций. Интегрирование некоторых тригонометрических выражений.
- •16. Определенный интеграл
- •Б) , если - нечетная функция. Эти утверждения наглядно иллюстрируются геометрически (рис. 3).
- •17.Несобственный интеграл.
- •19.Матрицы. Основные понятия . Действия над матрицами.
- •20.Определители: основные понятия. Свойства определителей. Вычисление определителей.
- •21. Невырожденные матрицы: основные понятия. Ранг матрицы.
- •22. Обратная матрица. Матричные уравнения.
- •23 Системы линейных уравнений: основные понятия, решение систем линейных уравнений.
- •24.Решение невырожденных линейных систем. Формулы Крамера.
- •2 5.Решение систем линейных уравнений методом Гаусса.
- •26. Системы однородных линейных уравнений. Фундаментальная система решений.
- •27.Линейные операции над векторами. Проекция вектора на ось, разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы. Действия над векторами.
- •Формула вычисления направляющих косинусов вектора для плоских задач
- •28.Скалярное произведение векторов и его свойства.
- •Формула скалярного произведения векторов для плоских задач
- •29. Векторное произведение векторов и его свойства.
- •Свойства векторного произведения векторов
- •30. Система координат на плоскости, основные понятия. Полярные координаты.
- •Полярная система координат.
- •31.Расстояние между двумя точками на плоскости. Деление отрезка в данном отношении.
- •Деление отрезка в данном отношении
- •33.Уравнение прямой в отрезках, нормальное уравнение прямой. Расстояние от заданной точки до прямой.
- •34.Угол между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •35.Общее уравнение алоскости.
- •Уравнение плоскости в отрезках
- •Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
- •Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
- •3 6. Каноническое уравнение прямой в пространстве.
- •37.Общее уравнение линии второго порядка. Каноническое уравнение окружности.
- •38.Эллипс, каноническое уравнение эллипса. Эксцентриситет эллипса.
- •39.Гипербола, каноническое уравнение гиперболы. Эксцентриситет гиперболы. Асимптоты гиперболы.
- •40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
- •41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
- •42.Производные и дифференциалы функции нескольких переменных.
- •43.Необходимое и достаточное условие экстремума функции двух переменных
- •44.Касательная плоскость и нормаль к поверхности
- •4 5.Знакопостоянные числовые ряды. Необходимый признак сходимости числового ряда. Признаки сравнения. Признаки сходимости: Даламбера, радикальный признак Коши, интегральный признак Коши.
- •46. Знакопеременные числовые ряды Условная сходимость. Признак Лейбница.
- •47.Степенные ряды. Радиус сходимости. Дифференцирование и интегрирование степенных рядов.
- •48.Разложение функции в степенные ряды. Ряды Тейлора и Маклорена.
- •51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
- •52.Уравнения в полных дифференциалах.
- •53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
- •54. Линейные однородные дифференциальные уравнения второго порядка.
- •55. Решение линейных неоднородных дифференциальных уравнений второго порядка.
- •56. Решение нормальных систем дифференциальных уравнений с постоянными коэффициентами матричным способом. (Решение систем дифференциальных уравнений –практика).
- •57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
- •59.Теорема сложения вероятностей несовместных событий. Теорема умножения вероятностей для независимых и зависимых событий.
- •60.Формула полной вероятности. Вероятность гипотез. Формула Байеса.
- •61. Повторные испытания. Формула Бернулли. Теоремы Лапласа. Формула Пуассона.
- •Теоремы Муавра-Лапласа
- •Формула Пуассона
- •62.Случайные величины: основные понятия, дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины.
- •65.Нормальное распределение. Кривая Гаусса. Влияние параметров µ и σ на форму кривой Гаусса. Вероятность попадания нормально распределенной случайной величины в заданный интервал Правило «трех сигм».
51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
Дифференциальное уравнение 1-го порядка – ур-ие F(x,y,y′) (1), связывающее между собой независим. переменную, неизвестную функцию и её производную
Если уравнение можно записать в виде y′=f(x,y), то оно разрешимо относительно производной. Записывают так: dy = f(x,y) dx или P(x,y) dx+Q(x,y) dy=0 (дифференциальная форма)
Решение (или интеграл) диф. Ур-ия 1-го порядка – любая функция y=φ(x), которая при подстановке в ур-ие обращает его в тождество. График – интегральная кривая.
Процесс – интегрирование.
Задача отыскания решения дифференциального уравнение 1-го порядка, удовл. Заданному начальному условия y(x0) , называется задачей Коши.
=> Общее решение уравнения – функция y=φ(x,C) (2), где С - произвольная постоянная, что:
1) При любом значении С она является решением этого уравнения;
2) для любого допустимого начального условия y(xо)=yо найдётся такое найдётся такое значение постоянной С=Со, что φ(xо,Cо)=yо
Иногда общее решение ур-ия необходимо записывать в неявном виде: φ(x,y,C)=0. Тогда это соотношение – общий интеграл ур-ия
Однородным
дифференциальным уравнением первого
порядка,
называется уравнение, имеющее вид
Подстановка
;
;
,
где
преобразует
это уравнение к уравнению с разделяющимися
переменными.
,
,
.
Однородные:
Функция F(x,y) называется
однородной степени k,
если F(ƛx,ƛy)=ƛF(x,y),
где
-
некоторая константа. Например, функция
является однородной функцией степени
два, поскольку
.
А
функция
является
однородной функцией нулевой степени
однородности, так как
.
Поэтому
общий вид однородного дифференциального
уравнения часто записывают как
,
где
-
однородная функция нулевой степени
однородности.
52.Уравнения в полных дифференциалах.
Определение уравнения в полных дифференциалах
Дифференциальное
уравнение вида
называется уравнением в полных дифференциалах, если существует такая функция двух переменных u(x,y) с непрерывными частными производными, что справедливо выражение
=
.
Общее решение уравнения в полных дифференциалах определяется формулой
,
где C − произвольная постоянная.
Необходимое и достаточное условие
Пусть функции P(x,y) и Q(x,y) имеют непрерывные частные производные в некоторой области D.Дифференциальное уравнение P(x,y)dx+Q(x,y)dy=0 будет являться уравнением в полных дифференциалах тогда и только тогда, если справедливо равенство:
∂Q∂x=∂P∂y.
Алгоритм решения уравнения в полных дифференциалах
Сначала убедимся, что дифференциальное уравнение является уравнением в полных дифференциалах, используя необходимое и достаточное условие:
Затем запишем систему двух дифференциальных уравнений, которые определяют функцию u(x,y):
Интегрируем первое уравнение по переменной x. Вместо постоянной C запишем неизвестную функцию, зависящую от y:
Дифференцируя по переменной y, подставим функцию u(x,y) во второе уравнение:
Отсюда получаем выражение для производной неизвестной функции φ(y):
Интегрируя последнее выражение, находим функцию φ(y) и, следовательно, функцию u(x,y):
Общее решение уравнения в полных дифференциалах записывается в виде:
