- •1.Комплексные числа: основные понятия. Геометрическое изображение. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- •2.Арифметические действия над комплексными числами. (сложение-вычитание, умножение, деление.
- •4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
- •5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
- •6.Производная функции, ее физический и геометрический смысл. Уравнение касательной.
- •7.Производная сложной функции. Логарифмическое дифференцирование. Производная неявной функции. Дифференцирование параметрической функции.
- •Логарифмическое дифференцирование. Для функций вида для упрощения нахождения производной рациональнее использовать логарифмическое дифференцирование.
- •8.Дифференциал функции, его аналитический и геометрический смысл. Применение дифференциала для приближенных вычислений.
- •9.Дифференциальные теоремы о среднем (теоремы Ролля, Лагранжа).
- •10. Теорема лопиталя.
- •Теоремы о выпуклости функции и точках перегиба
- •1 3. Первообразная функции:
- •1 4. Алгебраические многочлены и рациональные дроби
- •1 5. Интегрирование иррациональных функций. Интегрирование некоторых тригонометрических выражений.
- •16. Определенный интеграл
- •Б) , если - нечетная функция. Эти утверждения наглядно иллюстрируются геометрически (рис. 3).
- •17.Несобственный интеграл.
- •19.Матрицы. Основные понятия . Действия над матрицами.
- •20.Определители: основные понятия. Свойства определителей. Вычисление определителей.
- •21. Невырожденные матрицы: основные понятия. Ранг матрицы.
- •22. Обратная матрица. Матричные уравнения.
- •23 Системы линейных уравнений: основные понятия, решение систем линейных уравнений.
- •24.Решение невырожденных линейных систем. Формулы Крамера.
- •2 5.Решение систем линейных уравнений методом Гаусса.
- •26. Системы однородных линейных уравнений. Фундаментальная система решений.
- •27.Линейные операции над векторами. Проекция вектора на ось, разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы. Действия над векторами.
- •Формула вычисления направляющих косинусов вектора для плоских задач
- •28.Скалярное произведение векторов и его свойства.
- •Формула скалярного произведения векторов для плоских задач
- •29. Векторное произведение векторов и его свойства.
- •Свойства векторного произведения векторов
- •30. Система координат на плоскости, основные понятия. Полярные координаты.
- •Полярная система координат.
- •31.Расстояние между двумя точками на плоскости. Деление отрезка в данном отношении.
- •Деление отрезка в данном отношении
- •33.Уравнение прямой в отрезках, нормальное уравнение прямой. Расстояние от заданной точки до прямой.
- •34.Угол между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •35.Общее уравнение алоскости.
- •Уравнение плоскости в отрезках
- •Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
- •Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
- •3 6. Каноническое уравнение прямой в пространстве.
- •37.Общее уравнение линии второго порядка. Каноническое уравнение окружности.
- •38.Эллипс, каноническое уравнение эллипса. Эксцентриситет эллипса.
- •39.Гипербола, каноническое уравнение гиперболы. Эксцентриситет гиперболы. Асимптоты гиперболы.
- •40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
- •41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
- •42.Производные и дифференциалы функции нескольких переменных.
- •43.Необходимое и достаточное условие экстремума функции двух переменных
- •44.Касательная плоскость и нормаль к поверхности
- •4 5.Знакопостоянные числовые ряды. Необходимый признак сходимости числового ряда. Признаки сравнения. Признаки сходимости: Даламбера, радикальный признак Коши, интегральный признак Коши.
- •46. Знакопеременные числовые ряды Условная сходимость. Признак Лейбница.
- •47.Степенные ряды. Радиус сходимости. Дифференцирование и интегрирование степенных рядов.
- •48.Разложение функции в степенные ряды. Ряды Тейлора и Маклорена.
- •51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
- •52.Уравнения в полных дифференциалах.
- •53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
- •54. Линейные однородные дифференциальные уравнения второго порядка.
- •55. Решение линейных неоднородных дифференциальных уравнений второго порядка.
- •56. Решение нормальных систем дифференциальных уравнений с постоянными коэффициентами матричным способом. (Решение систем дифференциальных уравнений –практика).
- •57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
- •59.Теорема сложения вероятностей несовместных событий. Теорема умножения вероятностей для независимых и зависимых событий.
- •60.Формула полной вероятности. Вероятность гипотез. Формула Байеса.
- •61. Повторные испытания. Формула Бернулли. Теоремы Лапласа. Формула Пуассона.
- •Теоремы Муавра-Лапласа
- •Формула Пуассона
- •62.Случайные величины: основные понятия, дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины.
- •65.Нормальное распределение. Кривая Гаусса. Влияние параметров µ и σ на форму кривой Гаусса. Вероятность попадания нормально распределенной случайной величины в заданный интервал Правило «трех сигм».
42.Производные и дифференциалы функции нескольких переменных.
Частной производной
от функции
по
независимой переменной
называется
производная
,
вычисленная при постоянном
.
Частной производной
по y называется
производная
,
вычисленная при постоянном
.
Для частных производных справедливы
обычные правила и формулы дифференцирования.
Полным
приращением функции
в
точке
называется
разность
,
где
и
произвольные
приращения аргументов.
Функция
называется дифференцируемой в
точке
,
если в этой точке полное приращение
можно представить в виде
,
где
.
Полным
дифференциалом функции
называется
главная часть полного приращения
,
линейная относительно приращений
аргументов
и
,
то есть
.
Полный дифференциал
функции
вычисляется
по формуле
.
Для функции трех
переменных
.
При достаточно
малом
для
дифференцируемой функции
справедливы
приближенные равенства
;
,
которые применяются для приближенного
вычисления значения функции
43.Необходимое и достаточное условие экстремума функции двух переменных
Пусть функция u = f(x1, x2, … , xn) имеет непрерывные частные производные до 2–го порядка включительно в некоторой окрестности еестационарной точки M0(x10, x20, … , xn0) .
Пусть M(x10 + dx1, x20 + dx2, … , xn0 + dxn) — некоторая точка из этой окрестности. Тогда
|
Δu = f(x10 + dx1,x20 + dx2, … ,xn0 + dxn) − f(x10,x20, … ,xn0) |
— приращение функции, которое она получает при смещении из точки M0 в точку M .
По формуле Тейлора имеем
Δz = dz(M0) + 1 d2z(M0) + o(ρ2) 2! |
где ρ — расстояние между точками M0 и M .
Так как M0 — стационарная точка функции u = f(x1, … ,xn) , то dz(M0) = 0 .
Допустим, что d2z(M0) ≠ 0 для всех точек M из некоторой окрестности Oδ(M0), достаточно малой, чтобы в ней выполнялось неравенство |d2z(M0)| > |o(ρ2)| . Тогда знаки Δz и d2z(M0) одинаковы .
Если d2z(M0)>0 для всех точек M из окрестности Oδ(M0) то и Δz>0. В этом случае функция u = f(x1, … , xn) имеет минимум в точке M0 .
Если d2z(M0)<0 для всех точек M из окрестности Oδ(M0), то и Δz<0. В этом случае функция u = f(x1, … ,xn) имеет максимум в точке M0 .
Таким образом, достаточным условием экстремума функции нескольких переменных в ее стационарной точке является знакоопределенность (положительная или отрицательная определенность) дифференциала 2–го порядка в этой точке.
Достаточные условия экстремума функции 2–х переменных
Теорема. Пусть функция z = f(x, y) определена и имеет непрерывные частные производные второго порядка в стационарной точке M(x0, y0) (т.е. z'x (x0, y0) = z'y(x0, y0) = 0 ):
A = z''xx(x0, y0), B = z''xy(x0, y0), C = z''yy(x0, y0). |
Тогда:
если AC − B20 , то M — точка экстремума, причем при A0 — точка минимума, при A<0 — точка максимума;
если AC − B2<0 , то M не является точкой экстремума;
если AC − B2 = 0 , то требуется дополнительное исследование.
