- •1.Комплексные числа: основные понятия. Геометрическое изображение. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- •2.Арифметические действия над комплексными числами. (сложение-вычитание, умножение, деление.
- •4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
- •5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
- •6.Производная функции, ее физический и геометрический смысл. Уравнение касательной.
- •7.Производная сложной функции. Логарифмическое дифференцирование. Производная неявной функции. Дифференцирование параметрической функции.
- •Логарифмическое дифференцирование. Для функций вида для упрощения нахождения производной рациональнее использовать логарифмическое дифференцирование.
- •8.Дифференциал функции, его аналитический и геометрический смысл. Применение дифференциала для приближенных вычислений.
- •9.Дифференциальные теоремы о среднем (теоремы Ролля, Лагранжа).
- •10. Теорема лопиталя.
- •Теоремы о выпуклости функции и точках перегиба
- •1 3. Первообразная функции:
- •1 4. Алгебраические многочлены и рациональные дроби
- •1 5. Интегрирование иррациональных функций. Интегрирование некоторых тригонометрических выражений.
- •16. Определенный интеграл
- •Б) , если - нечетная функция. Эти утверждения наглядно иллюстрируются геометрически (рис. 3).
- •17.Несобственный интеграл.
- •19.Матрицы. Основные понятия . Действия над матрицами.
- •20.Определители: основные понятия. Свойства определителей. Вычисление определителей.
- •21. Невырожденные матрицы: основные понятия. Ранг матрицы.
- •22. Обратная матрица. Матричные уравнения.
- •23 Системы линейных уравнений: основные понятия, решение систем линейных уравнений.
- •24.Решение невырожденных линейных систем. Формулы Крамера.
- •2 5.Решение систем линейных уравнений методом Гаусса.
- •26. Системы однородных линейных уравнений. Фундаментальная система решений.
- •27.Линейные операции над векторами. Проекция вектора на ось, разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы. Действия над векторами.
- •Формула вычисления направляющих косинусов вектора для плоских задач
- •28.Скалярное произведение векторов и его свойства.
- •Формула скалярного произведения векторов для плоских задач
- •29. Векторное произведение векторов и его свойства.
- •Свойства векторного произведения векторов
- •30. Система координат на плоскости, основные понятия. Полярные координаты.
- •Полярная система координат.
- •31.Расстояние между двумя точками на плоскости. Деление отрезка в данном отношении.
- •Деление отрезка в данном отношении
- •33.Уравнение прямой в отрезках, нормальное уравнение прямой. Расстояние от заданной точки до прямой.
- •34.Угол между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •35.Общее уравнение алоскости.
- •Уравнение плоскости в отрезках
- •Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
- •Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
- •3 6. Каноническое уравнение прямой в пространстве.
- •37.Общее уравнение линии второго порядка. Каноническое уравнение окружности.
- •38.Эллипс, каноническое уравнение эллипса. Эксцентриситет эллипса.
- •39.Гипербола, каноническое уравнение гиперболы. Эксцентриситет гиперболы. Асимптоты гиперболы.
- •40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
- •41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
- •42.Производные и дифференциалы функции нескольких переменных.
- •43.Необходимое и достаточное условие экстремума функции двух переменных
- •44.Касательная плоскость и нормаль к поверхности
- •4 5.Знакопостоянные числовые ряды. Необходимый признак сходимости числового ряда. Признаки сравнения. Признаки сходимости: Даламбера, радикальный признак Коши, интегральный признак Коши.
- •46. Знакопеременные числовые ряды Условная сходимость. Признак Лейбница.
- •47.Степенные ряды. Радиус сходимости. Дифференцирование и интегрирование степенных рядов.
- •48.Разложение функции в степенные ряды. Ряды Тейлора и Маклорена.
- •51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
- •52.Уравнения в полных дифференциалах.
- •53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
- •54. Линейные однородные дифференциальные уравнения второго порядка.
- •55. Решение линейных неоднородных дифференциальных уравнений второго порядка.
- •56. Решение нормальных систем дифференциальных уравнений с постоянными коэффициентами матричным способом. (Решение систем дифференциальных уравнений –практика).
- •57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
- •59.Теорема сложения вероятностей несовместных событий. Теорема умножения вероятностей для независимых и зависимых событий.
- •60.Формула полной вероятности. Вероятность гипотез. Формула Байеса.
- •61. Повторные испытания. Формула Бернулли. Теоремы Лапласа. Формула Пуассона.
- •Теоремы Муавра-Лапласа
- •Формула Пуассона
- •62.Случайные величины: основные понятия, дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины.
- •65.Нормальное распределение. Кривая Гаусса. Влияние параметров µ и σ на форму кривой Гаусса. Вероятность попадания нормально распределенной случайной величины в заданный интервал Правило «трех сигм».
4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
Постоянное число а называется пределом последовательности{xn}, если для любого сколь угодно малого положительного числа ε>0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству |xn-a|< ε. (6.1)
Записывают
это следующим образом:
или
xn→a.
Неравенство (6.1) равносильно двойному неравенству a-ε<xn<a+ε, (6.2)
которое означает, что точки xn, начиная с некоторого номера n>N, лежат внутри интервала (a-ε, a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а.
Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn=f(n) целочисленного аргумента n.
Определение 1. Постоянное число А называется предел функции f(x) при x→a, если для всякой последовательности {xn} значений аргумента, стремящейся к а, соответствующие им последовательности {f(xn)} имеют один и тот же предел А.
Это определение называют определением предел функции по Гейне.
Определение 2. Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное как угодно малое положительное число ε, можно найти такое δ>0 (зависящее от ε), что для всех x, лежащих в ε-окрестности числа а, т.е. для x, удовлетворяющих неравенству 0<x-a< ε, значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A|<ε. Это определение называют определением предел функции по Коши, или “на языке ε - δ“.
Определения
1 и 2 равносильны. Если функция f(x) при
x→a имеет предел,
равный А, это записывается в виде
(6.3)
В том случае, если последовательность {f(xn)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а, то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:
Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной. Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной.
Чтобы найти предел на практике пользуются следующими теоремами.
Теорема
1.
Если существует каждый предел
(6.4)
(6.5)
(6.6)
Замечание. Выражения вида 0/0, ∞/∞, ∞-∞, 0*∞, - являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.
Теорема2
.
(6.7)
т.е.
можно переходить к пределу в основании
степени при постоянном показателе, в
частности,
;
(6.8)
(6.9)
Теорема
3.
(6.10)
(6.11)
где e→2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первого замечательного предела и второго замечательного предела.
Используются на практике и следствия формулы (6.11):
(6.12)
(6.13)
(6.14)
в
частности предел,
Функция
называется бесконечно
малой функцией (б.м.ф.) при
(или
в точке
),
если
Основные свойства бесконечно малых функций
Сумма конечного числа б.м функций является функцией б.м.
Произведение б.м функции на ограниченную есть функция б.м.
Произведение двух б.м функций есть функция б.м.
Произведение б.м функции на константу является б.м функцией.
Частное от деления б.м функции на функцию, предел которой не равен нулю, есть функция б.м.
Функция
,
обратная к б.м функции
,
есть функция бесконечно большая. Верно
и обратное.
БЕСКОНЕЧНО БОЛЬШАЯ ФУНКЦИЯ - функция переменного х, к-рая в данном процессе изменения х становится и остается по абсолютной величине больше любого наперед заданного числа. Точнее, функция f(x), определенная в окрестности точки х0, наз. бесконечно большой функцией при х, стремящемся к x0, если для любого числа М > 0 найдется такое число δ = δ (М) > 0, что для всех х ≠ х0 и таких, что |х - х0 | < δ, выполняется неравенство |f(x)| > M. Этот факт записывается так:
Аналогичным
образом определяются
Напр.,
означает,
что для любого М>0 найдется такое δ=δ
(M)>0, что для всех z<-δ выполняется
неравенство f(x)>M.
