- •1.Комплексные числа: основные понятия. Геометрическое изображение. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- •2.Арифметические действия над комплексными числами. (сложение-вычитание, умножение, деление.
- •4.Предел функции, основные теоремы о пределах. Два замечательных предела. Бесконечно малые и бесконечно большие функции.
- •5.Непрерывность функции: непрерывность функции в точке, в интервале и на отрезке, точки разрыва функции и их классификация, основные теоремы о непрерывных функциях, непрерывность элементарных функций.
- •6.Производная функции, ее физический и геометрический смысл. Уравнение касательной.
- •7.Производная сложной функции. Логарифмическое дифференцирование. Производная неявной функции. Дифференцирование параметрической функции.
- •Логарифмическое дифференцирование. Для функций вида для упрощения нахождения производной рациональнее использовать логарифмическое дифференцирование.
- •8.Дифференциал функции, его аналитический и геометрический смысл. Применение дифференциала для приближенных вычислений.
- •9.Дифференциальные теоремы о среднем (теоремы Ролля, Лагранжа).
- •10. Теорема лопиталя.
- •Теоремы о выпуклости функции и точках перегиба
- •1 3. Первообразная функции:
- •1 4. Алгебраические многочлены и рациональные дроби
- •1 5. Интегрирование иррациональных функций. Интегрирование некоторых тригонометрических выражений.
- •16. Определенный интеграл
- •Б) , если - нечетная функция. Эти утверждения наглядно иллюстрируются геометрически (рис. 3).
- •17.Несобственный интеграл.
- •19.Матрицы. Основные понятия . Действия над матрицами.
- •20.Определители: основные понятия. Свойства определителей. Вычисление определителей.
- •21. Невырожденные матрицы: основные понятия. Ранг матрицы.
- •22. Обратная матрица. Матричные уравнения.
- •23 Системы линейных уравнений: основные понятия, решение систем линейных уравнений.
- •24.Решение невырожденных линейных систем. Формулы Крамера.
- •2 5.Решение систем линейных уравнений методом Гаусса.
- •26. Системы однородных линейных уравнений. Фундаментальная система решений.
- •27.Линейные операции над векторами. Проекция вектора на ось, разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы. Действия над векторами.
- •Формула вычисления направляющих косинусов вектора для плоских задач
- •28.Скалярное произведение векторов и его свойства.
- •Формула скалярного произведения векторов для плоских задач
- •29. Векторное произведение векторов и его свойства.
- •Свойства векторного произведения векторов
- •30. Система координат на плоскости, основные понятия. Полярные координаты.
- •Полярная система координат.
- •31.Расстояние между двумя точками на плоскости. Деление отрезка в данном отношении.
- •Деление отрезка в данном отношении
- •33.Уравнение прямой в отрезках, нормальное уравнение прямой. Расстояние от заданной точки до прямой.
- •34.Угол между прямыми на плоскости. Условия параллельности и перпендикулярности прямых.
- •35.Общее уравнение алоскости.
- •Уравнение плоскости в отрезках
- •Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
- •Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
- •3 6. Каноническое уравнение прямой в пространстве.
- •37.Общее уравнение линии второго порядка. Каноническое уравнение окружности.
- •38.Эллипс, каноническое уравнение эллипса. Эксцентриситет эллипса.
- •39.Гипербола, каноническое уравнение гиперболы. Эксцентриситет гиперболы. Асимптоты гиперболы.
- •40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
- •41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
- •42.Производные и дифференциалы функции нескольких переменных.
- •43.Необходимое и достаточное условие экстремума функции двух переменных
- •44.Касательная плоскость и нормаль к поверхности
- •4 5.Знакопостоянные числовые ряды. Необходимый признак сходимости числового ряда. Признаки сравнения. Признаки сходимости: Даламбера, радикальный признак Коши, интегральный признак Коши.
- •46. Знакопеременные числовые ряды Условная сходимость. Признак Лейбница.
- •47.Степенные ряды. Радиус сходимости. Дифференцирование и интегрирование степенных рядов.
- •48.Разложение функции в степенные ряды. Ряды Тейлора и Маклорена.
- •51.Общие сведения о дифференциальных уравнениях. Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных.
- •52.Уравнения в полных дифференциалах.
- •53.Решение линейных уравнений первого порядка, метод вариации постоянной, метод Бернулли.
- •54. Линейные однородные дифференциальные уравнения второго порядка.
- •55. Решение линейных неоднородных дифференциальных уравнений второго порядка.
- •56. Решение нормальных систем дифференциальных уравнений с постоянными коэффициентами матричным способом. (Решение систем дифференциальных уравнений –практика).
- •57.Основные понятия теории вероятностей: испытания и события, виды случайных событий.
- •59.Теорема сложения вероятностей несовместных событий. Теорема умножения вероятностей для независимых и зависимых событий.
- •60.Формула полной вероятности. Вероятность гипотез. Формула Байеса.
- •61. Повторные испытания. Формула Бернулли. Теоремы Лапласа. Формула Пуассона.
- •Теоремы Муавра-Лапласа
- •Формула Пуассона
- •62.Случайные величины: основные понятия, дискретные и непрерывные случайные величины. Закон распределения дискретной случайной величины.
- •65.Нормальное распределение. Кривая Гаусса. Влияние параметров µ и σ на форму кривой Гаусса. Вероятность попадания нормально распределенной случайной величины в заданный интервал Правило «трех сигм».
40.Парабола, каноническое уравнение параболы. Исследование форм параболы по ее уравнению - практика.
Парабола — геометрическое место точек, равноудалённых от даннойпрямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).
Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом.
Каноническое уравнение параболы в прямоугольной системе координат: y2=2⋅p⋅x,
{\displaystyle \textstyle y^{2}=2px,p>0 (или {\displaystyle \textstyle x^{2}=2py}, если поменять местами оси).
Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии {\displaystyle {\frac {p}{2}}} от обоих.
1.
В уравнении переменная у входит в четной
степени, значит, парабола симметрична
относительно оси Ох; ось Ох является
осью симметрии параболы.
2. Так как ρ > 0, то из (11.13) следует, что х>0. Следовательно, парабола расположена справа от оси Оу.
3. При имеем у = 0. Следовательно, парабола проходит через начало координат.
4. При неограниченном возрастании x модуль у также неограниченно возрастает.
Точка О (0;0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.
Уравнения
,
,
(p>0)
также определяют параболы, они изображены
на рисунке 62.
Нетрудно
показать, что график квадратного
трехчлена
,
где
,
B и С любые действительные числа,
представляет собой параболу в смысле
приведенного выше ее определения.
41.Основные понятия, предел функции двух переменных, непрерывность функции двух переменных.
Определение. Если каждой паре (x,y) значений двух независимых друг от друга, переменных величин x и y, из некоторой области их изменения D, соответствует определенное значение величины z, то говорят, что z функция двух независимых переменных x и y, определенная в области D.
Обычно функция нескольких переменных задается явным аналитическим способом. Например: z=3x+5y2,u=xy+z2 и т.д.
Встречается также и неявное задание таких функций, например: z-2x-sinxy=0.
Упорядоченная пара чисел (x,y) может рассматриваться как точка на плоскости, т.е. Z есть функция точки (x,y).
Чтобы задать функцию z=f(x,y), надо не только указать правило нахождения z по заданным x и y, но и то множество (называемое областью задания функции) пар значений, которые могут принимать аргументы x и y.
Если каждой совокупности значений переменных x,y,z…t соответствует определенное значение переменной w, то w называется функцией независимых переменных x,y,z…t и записывается w=f(x,y,z…t).
Для функции трех переменных областью определения является упорядоченная тройка чисел (x,y,z), т.е. некоторая совокупность точек пространства. Область определения функции четырех и большего числа переменных не допускает простого геометрического истолкования.
Функции двух переменных допускают графическую иллюстрацию. Графиком функции z=f(x,y), заданной на некотором множествеD точек плоскости ХОУ, называется множество точек (x,y,z) пространства, у которых (x,y) принадлежит D, а z=f(x,y). В наиболее простых случаях такой график представляет собой некоторую поверхность.
О
пределение. Число А называется
пределом функции f(M),
где М(x1,x2,…xn) –
точка n-мерного пространства, при
стремлении точки М к
точке М0(x10,x20,…xn0) любым
образом, если для всякого сколь угодно
малого
>0
существует такое число
>0,
что из условия
<
,
где
-
расстояние между точками М и М0,
следует
<
.
Обозначается:
А .
Пусть z=f(x,y). Придадим x и y приращения
и
.
Получим приращение
функции z=f(x,y).
Если
,
т.е. бесконечно малым аргументам
соответствует бесконечно малое приращение
функции, то говорят, что функция
непрерывна.
Распишем
x0+
y+
-f(x0,y0) и
положим x0+
x=x,y0+
,то
выражение(1) можно записать в виде
f(x,y)=f(x 0,y0),
т.е. непрерывность функции означает,
что ее предел равен ее значению от
пределов аргументов.
Функция, непрерывная в каждой точке некоторой области, называется непрерывной в области. Если в некоторой точке не выполняется условие (2), то эта точка называется точкой разрыва.
