Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория Матан.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.99 Mб
Скачать

29. Векторное произведение векторов и его свойства.

Векторным произведением вектора a на вектор b называется вектор c, длина которого численно равна площади параллелограмма построенного на векторах a и b, перпендикулярный к плоскости этих векторов и направленный так, чтоб наименьшее вращение от a кb вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора c (рис. 1).

Формулы вычисления векторного произведения векторов

a = {ax; ay; az} и b = {bx; by; bz} в декартовой системе координат - это вектор, значение которого можно вычислить, используя следующие формулы:

a × b = 

   i   

   j   

   k   

 = i(aybz - azby) - j(axbz - azbx) + k(axby - aybx)

 ax 

 ay 

 az 

 bx 

 by 

 bz 

a × b = {aybz - azby; azbx - axbz; axby - aybx}

Свойства векторного произведения векторов

- Геометрический смысл векторного произведения.

 Модуль векторного произведения двух векторов a и b равен площади параллелограмма построенного на этих векторах: Sпарал = [a × b]

- Геометрический смысл векторного произведения.

 Площадь треугольника построенного на векторах a и b равна половине модуля векторного произведения этих векторов:

SΔ = 

1

|a × b|

2

- Векторное произведения двух не нулевых векторов a и b равно нулю тогда и только тогда, когда вектора коллинеарны.

- Вектор c, равный векторному произведению не нулевых векторов a и b, перпендикулярен этим векторам.

  • a × b = -b × a

  • (k a) × b = a × (k b) = k (a × b)

  • (a + b) × c = a × c + b × c

30. Система координат на плоскости, основные понятия. Полярные координаты.

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа. В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, илисферическими координатами, где начало координат находится в центре сферы.

Расположение точки P на плоскости определяется декартовыми координатами с помощью пары чисел {\displaystyle (x,y):}

  • {\displaystyle x} — расстояние от точки P до оси y с учетом знака

  • {\displaystyle y} — расстояние от точки P до оси x с учетом знака

  • В пространстве необходимо уже 3 координаты {\displaystyle (x,y,z):}

  • {\displaystyle x} — расстояние от точки P до плоскости yz

  • {\displaystyle y} — расстояние от точки P до плоскости xz

  • {\displaystyle z} — расстояние от точки P до плоскости xy