- •Материалы по подготовке электрогазо-сварщиков к аттестации
- •1. Виды сварных швов по расположению в пространстве, форме сечения, характеру сопряжения свариваемых деталей.
- •2. Классификация сталей по содержанию углерода
- •3. Электрическая сварочная дуга. Вольтамперная характеристика
- •4. Причины возникновения напряжений и деформаций при сварке
- •5 Опасные и вредные факторы при производстве сварочных работ
- •6 Виды швов по расположению в пространстве. Особенности сварки швов в различных пространственных положениях.
- •7 Защита от поражения электрическим током при выполнении сварочных работ
- •8 Классификация сталей по содержанию легирующих элементов
- •9 Разделка, зачистка кромок соединений, поверхностей слоев под сварку
- •10 Изображение и условное обозначение сварных швов на чертежах по ескд.
- •11 Физические , химические , механические и технологические свойства металлов.
- •12 Количество, размер и расположение прихваток при сварке металла
- •13 Меры борьбы с напряжениями и деформациями
- •14 Безопасное напряжение и безопасная величина тока. Способы помощи пострадавшим, получившим электротравму.
- •15 Низкоуглеродистые, низколегированные, высоколегированные стали. Свариваемость.
- •16 Подбор режимов сварки в зависимости от толщины свариваемых изделий
- •17 Меры безопасности от ожогов и брызг расплавленного металла
- •18 Назначение сварочной проволоки, типы проволок. Хранение сварочной проволоки.
- •19Последовательность наложения валиков, слоев, зачистки поверхностей металла на слоях, при сварке многослойных соединений из стали.
- •20 Влияние легирующих элементов на свойства сталей и их свариваемость. Химические эквиваленты углерода , хрома и никеля.
- •21 Свариваемость металлов. Свариваемость низкоуглеродистых, низколегированных, высоколегированных нержавеющих сталей.
- •22.Мероприятия по борьбе с загазованностью воздуха при выполнении электросварочных работ.
- •23 Правила безопасной эксплуатации баллонов с сжатыми газами.
- •24 Электрическая сварочная дуга и процессы протекающие в ней . Прямая и обратная полярность при сварке.
- •25 Углекислый газ, аргон их свойства и получение.
- •26 Марки проволок, рекомендуемые для сварки низкоуглеродистых, низколегированных, высоколегированных сталей и их химический состав. Расшифровка обозначений марок проволок.
- •27 Дефекты сварных швов при механизированной сварке в смеси газов
- •Дефекты формы и размеров сварных швов
- •Дефекты макроструктуры
- •28 Технология механизированной сварки в смеси газов низколегированных и низкоуглеродистых сталей.
- •29 Требования, предъявляемые к смесям газов, применяемым при механизированной сварке.
- •30 Технология сварки длинных швов на листовых металлоконструкциях.
- •31 Меры пожарной безопасности при производстве сварочных работ.
- •32 Влияние сварочного тока, напряжения, скорости сварки на размеры сварного шва и глубину проплавления.
- •33 Сварка контрольных соединений при изготовлении сосудов , работающих под давлением.
- •34 Защита от вредного излучения сварочной дуги на органы зрения и открытые части тела человека.
- •35 Конструкция сварочной горелки полуавтомата.
- •36 Способ сварки углом вперед, углом назад. Влияние угла наклона электрода, вылета электрода, расхода газа на размеры шва, глубину проплавления сварка углом вперед
- •Сварка углом назад
- •37 Неразрушающий и разрушающий методы контроля качества сварных соединений.
- •38 Правила техники безпасности при сварке внутри сосудов, емкостей.
- •39 Влияние кислорода, водорода, азота на металл шва.
- •40 Методы борьбы с пористостью шва при механизированной сварке в смеси газов.
- •41 Электрическая вольт амперная характеристика сварочного полуавтомата.
- •42 Постоянный ток. Еденицы измерения тока.
- •43 Технология сварки неповоротных стыков труб, обечаек.
- •45 Раскисление и восстановление металла при механизированной сварке в смеси газов.
- •46 Виды сварочных материалов. Назначение и свойства сварочных материалов применяемых при механизированной сварке.
- •47 Технология сварки низколегированных(теплоустойчивых), высоколегированных нержавеющих сталей.
- •48 Порядок проведения и инструменты для визуального контроля и обмера сварных швов.
- •49 Влияние содержания серы и фосфора на металл шва.
- •50 Погонная энергия сварки
- •51 Правила техники безопасности при производстве сварочных работ на высоте
- •52 Сущность межкристаллитной коррозии сварных соединений из нержавеющих сталей. Мероприятия при сварке по предупреждению возникновения межкристаллитной коррозии
34 Защита от вредного излучения сварочной дуги на органы зрения и открытые части тела человека.
35 Конструкция сварочной горелки полуавтомата.
36 Способ сварки углом вперед, углом назад. Влияние угла наклона электрода, вылета электрода, расхода газа на размеры шва, глубину проплавления сварка углом вперед
При сварке углом вперед уменьшается глубина провара и высота выпуклости шва, но заметно возрастает его ширина, что позволяет использовать этот способ при сварке металла небольшой толщины. Лучше проплавляются кромки, поэтому возможна сварка на повышенных скоростях
Сварка углом назад
При сварке углом назад глубина провара и высота выпуклости увеличиваются, но уменьшается ширина. Прогрев кромок недостаточен, поэтому возможны несплавления и образование пор.
Вылет электрода и расход газа не влияют на размеры шва и глубину проплавления.
37 Неразрушающий и разрушающий методы контроля качества сварных соединений.
Применяются следующие основные методы неразрушающего контроля сварных соединений:
внешний осмотр;
радиационная дефектоскопия;
магнитный контроль;
ультразвуковая дефектоскопия;
капиллярная дефектоскопия;
контроль сварных швов на проницаемость;
прочие методы (проверка с использованием вихревых токов и т.п.).
К способам контроля сварных соединений с их разрушением относятся: – механические испытания; металлографические исследования; специальные испытания с целью получения характеристик сварных соединений.
Испытаниями на статическое растяжение определяют прочность сварных соединений. Испытаниями на статический изгиб определяют пластичность соединения по величине угла изгиба до образования первой трещины в растянутой зоне. Испытаниями на ударный изгиб, а также ударный разрыв, определяют ударную вязкость сварного соединения.
Основной задачей металлографического анализа является установление структуры металла и качества сварного соединения, выявление наличия и характера дефектов
Специальные испытания проводят с целью получения характеристик сварных соединений, учитывающих условия эксплуатации сварной конструкции: – определение коррозионной стойкости для конструкций, работающих в коррозионных средах; – усталостной прочности при циклических нагрузках; ползучести при эксплуатации в условиях воздействия повышенных температур и др.
38 Правила техники безпасности при сварке внутри сосудов, емкостей.
Сварку внутри резервуаров и в плохо вентилируемых помещениях и емкостях следует вести с применением систем принудительной венти ляции и с перерывами в работе. Снаружи должен находиться второй че ловек, который способен оказать помощь в случае необходимости.
39 Влияние кислорода, водорода, азота на металл шва.
Кислород (О2)в металле шва проникает из окружающего воздуха и образует в металлах окислы (FeO, Fe2O3, Fe3O4), что приводит к понижению механических свойств металла. При охлаждении металла окислы железа образуют шлаковые прослойки между зернами металла, неметаллические включения. Окислы железа приводят к коррозии металла.
Азот (N2)в металле шва проникает из окружающего воздуха и образует в металле нитриты марганца MnN и кремния SiN. При больших скоростях охлаждения азот не успевает полностью выделится, и составляет с металлом пересыщенный твердый раствор, что со временем является причиной процесса старения металла, при котором значительно снижаются механические свойства стали. Азот является вредной примесью стали, так как, повышает прочность и твердость, значительно снижая пластичность и вязкость металла.
Водород (H2)в зону сварки , попадает из окружающего воздуха, влаги электродных покрытий и ржавчины. Молекулярный водород распадается на атомарный , который хорошо растворяется в расплавленном металле. При высоких скоростях охлаждения водород переходит из атомарного состояния в молекулярное состояние, не полностью выделится из металла сварочной ванны, что вызывает образование пор и трещин и снижает пластичность металла шва.
