- •1. Основные термины и определения применяемые в электротехнике.
- •2. Электрическая цепь, основные законы электрических цепей. Закон электромагнитной индукции.
- •3. Расчет электрической цепи постоянного тока методом эквивалентных преобразований. Построение потенциальной диаграммы.
- •4. Расчет электрической цепи методом непосредственного применения законов Кирхгофа. Баланс мощности электрической цепи.
- •5. Расчет электрической цепи методом контурных токов. Построение потенциальной диаграммы.
- •6. Расчет электрической цепи методом наложения. Баланс мощности электрической цепи.
- •7. Расчет электрической цепи методом двух узлов. Баланс мощности электрической цепи
- •9. Анализ электрического состояния цепи переменного тока. Цепь с резистивным элементом. Цепь с индуктивным элементом. Основные формулы. Временные и векторные диаграммы.
- •10. Анализ электрического состояния цепи переменного тока. Цепь с резистивным элементом. Цепь с конденсатором. Основные формулы. Временные и векторные диаграммы.
- •11. Цепь с последовательным соединением элементов r, l, c. Комплексное и полное сопротивление цепи. Закон Ома в комплексной форме. Векторная диаграмма.
- •12. Резонанс напряжений в цепи переменного тока. Условия возникновения и практическое значение.
- •13. Расчет цепи переменного тока с использованием комплексных чисел.
- •14. Свойства цепей с параллельным соединением элементов. Резонанс токов. Условия возникновения. Векторные диаграммы
- •15. Мощности в цепи переменного тока (активная, реактивная и полная). Треугольник мощностей. Коэффициент мощности и его экономическое значение.
- •17. Мощность трехфазной цепи. Расчет трехфазных цепей. Соединение звездой.
- •18. Мощность трехфазной цепи. Расчет трехфазных цепей. Соединение треугольником.
- •19. Метод эквивалентного генератора.
- •20. Методы расчета нелинейных цепей постоянного тока. Последовательное соединение элементов. Параллельное соединение элементов.
- •21. Методы расчета нелинейных цепей постоянного тока. Смешанное соединение элементов.
- •22. Расчет неразветвленных магнитных цепей. Прямая задача.
- •23. Расчет неразветвленных магнитных цепей. Обратная задача.
- •24. Принцип действия трансформатора и его уравнения. Коэффициент трансформации.
- •25. Режимы работы трансформатора. Потери мощности в трансформаторе. Кпд. Внешняя характеристика трансформатора.
- •26. Основные сведения об автотрансформаторах. Общие сведения об измерительных трансформаторах.
- •27. Применение трансформаторов. Условия включения трансформаторов на параллельную работу.
- •28. Конструкция трансформаторов. Технические (паспортные) данные трансформаторов
- •29. Ферромагнитные материалы и их магнитные свойства. Закон полного тока и его применение для расчета магнитного поля.
- •30. Генераторы постоянного тока. Существующие системы возбуждения. Конструкция и принцип действия гпт с независимым возбуждением.
- •31. Рабочие характеристики синхронных генераторов.
- •32. Рабочие характеристики генераторов постоянного тока.
- •33. Конструкция и принцип действия трехфазного асинхронного двигателя. Вращающееся магнитное поле машины.
- •34. Механическая характеристика асинхронного двигателя. Особенности пуска в ход асинхронных двигателей
- •35. Регулирование частоты вращения асинхронных двигателей. Коэффициент мощности асинхронных двигателей.
- •36. Конструкция и принцип действия машины постоянного тока, области применения, принцип обратимости машин.
- •37. Двигатели постоянного тока. Конструкция и принцип действия. Способы пуска двигателя в ход. Способы регулирования частоты вращения.
- •38. Генераторы постоянного тока. Существующие системы возбуждения. Принцип и условия самовозбуждения генератора постоянного тока параллельного возбуждения.
- •39. Реакция якоря генератора постоянного тока и ее влияние на внешнюю характеристику.
- •40. Конструкция и принцип действия синхронных машин с электромагнитным возбуждением. Принцип обратимости.
- •41. Реакция якоря синхронного генератора и ее влияние на внешнюю характеристику в зависимости от вида нагрузки.
- •42. Принцип действия синхронного двигателя. Механическая характеристика. Особенности пуска в ход синхронного двигателя.
- •44. Источники вторичного электропитания. Основные функциональные узлы. Классификация ивэп.
- •45. Общие понятия об усилителях электрических сигналов, основные параметры, классы усиления.
- •46. Электрические измерения в однофазных и трехфазных цепях, классы точности и системы измерительных приборов.
- •47. Система электроснабжения потребителей электроэнергии. Типы электрических станций. Достоинства, недостатки
- •48. Приемники электроэнергии. Классификация и общие характеристики.
- •49. Электрические сети. Классификация и основные сведения.
- •Назначение, область применения
- •Масштабные признаки, размеры сети
- •Род тока
- •50. Полупроводниковые выпрямители переменного тока. Классификация. Принцип действия.
- •51.Основы электрического привода, основные понятия, структура электропривода и классификация. Уравнение движения.
- •52. Режимы работы электродвигателей. Выбор мощности электродвигателя по нагреву.
- •53. Способы измерения мощности трехфазной цепи.
- •54. Трехфазные трансформаторы. Особенности конструктивных исполнений. Принцип действия. Области применения.
27. Применение трансформаторов. Условия включения трансформаторов на параллельную работу.
Для включения на параллельную работу однофазных трансформаторов необходимо выполнить следующие условия:
1. Напряжения первичных и вторичных обмоток параллельно включаемых трансформаторов должны быть равны. В этом случае коэффициенты трансформации трансформаторов окажутся также равными.
2. Равенство напряжений короткого замыкания.
3. Включение одинаковыми фазами со стороны высшего и низшего напряжений.
Трансформаторы играю важную роль в электротехнических системах. Они осуществляют трансформацию токов и напряжений, обеспечивая экономическую передачу и распределение энергии. Электроэнергия передается потребителям по линиям электропередачи (ЛЭП) при напряжении 500, 750 или 1050 кВ. При этом достигается увеличение пропускной способности ЛЭП, уменьшение токов и потерь мощности в ее проводах. Таким образом, возникает необходимость создания разветвленной системы повышающих и понижающих подстанций с множеством трансформаторов. Трансформаторы в системах распределения электроэнергии называют силовыми. Они имеют номинальную мощность от 10 кВА до 1 млн. кВА. Свойство трансформации напряжений и токов используется также в измерительных трансформаторах. При сварочных работах, при использовании ручным электроинструментом с помощью трансформаторов можно снизить напряжение до безопасного и технически оправданного уровня, что широко применяют на практике. Во всех случаях используют важнейшее свойство трансформаторов – возможность передачи электроэнергии при отсутствии электрической связи между обмотками.
28. Конструкция трансформаторов. Технические (паспортные) данные трансформаторов
К трехфазным трансформаторам можно применить все характеристики, которые относятся к однофазным. Трехфазный трансформатор объединил в себе три однофазных трансформатора (трансформаторную группу). Трансформаторная группа дороже по стоимости, имеет меньший КПД, больше по размерам
Обмотки трехфазного трансформатора соединяются звездой или треугольником. Соединение обеих обмоток звездой наиболее простое и дешевое, применяется для трансформаторов небольшой и средней мощности. Соединение обмоток треугольником оправдано при больших токах, Соединение звезда/треугольник наиболее распространено.
Чтобы уяснить себе принцип действия и устройства трехфазного трансформатора, представим себе три однофазных трансформатора, приставленных один к другому так, что три стержня их образуют один общий центральный стержень (рис. 1). На каждом из остальных трех стержней наложены первичные и вторичные обмотки (на рис. 1 вторичные обмотки не изображены).
Предположим, что первичные катушки всех стержней трансформатора совершенно одинаковы и намотаны в одном направлении (на рис. 1 первичные катушки намотаны по часовой стрелке, если смотреть на них сверху). Соединим все верхние концы катушек в нейтраль О, а нижние концы катушек подведем к трем зажимам трехфазной сети.
Рисунок 1.
Токи в катушках трансформатора создадут переменные во времени магнитные потоки, которые будут замыкаться каждый в своей магнитной цепи. В центральном составном стержне магнитные потоки сложатся и в сумме дадут ноль, ибо эти потоки создаются симметричными трехфазными токами, относительно которых мы знаем, что сумма мгновенных значений их равна нулю в любой момент времени. Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.
Технические(паспортные) данные трансформаторов.
1.U1 ном.- номинальное напряжение
2.Uхх- напряжение холостого хода вторичной обмотки
3.Sном.- номинальная полная мощность
4.Uк.з.- напряжение короткого замыкания, выраженное в % от U ном.
1.Мощность потерь в режиме холостого хода и короткого замыкания.
2.I0- ток первичной обмотки при холостом ходе трансформатора.
(в % от Iном.)
3.Габариты и масса трансформатора.
