- •1. Основные термины и определения применяемые в электротехнике.
- •2. Электрическая цепь, основные законы электрических цепей. Закон электромагнитной индукции.
- •3. Расчет электрической цепи постоянного тока методом эквивалентных преобразований. Построение потенциальной диаграммы.
- •4. Расчет электрической цепи методом непосредственного применения законов Кирхгофа. Баланс мощности электрической цепи.
- •5. Расчет электрической цепи методом контурных токов. Построение потенциальной диаграммы.
- •6. Расчет электрической цепи методом наложения. Баланс мощности электрической цепи.
- •7. Расчет электрической цепи методом двух узлов. Баланс мощности электрической цепи
- •9. Анализ электрического состояния цепи переменного тока. Цепь с резистивным элементом. Цепь с индуктивным элементом. Основные формулы. Временные и векторные диаграммы.
- •10. Анализ электрического состояния цепи переменного тока. Цепь с резистивным элементом. Цепь с конденсатором. Основные формулы. Временные и векторные диаграммы.
- •11. Цепь с последовательным соединением элементов r, l, c. Комплексное и полное сопротивление цепи. Закон Ома в комплексной форме. Векторная диаграмма.
- •12. Резонанс напряжений в цепи переменного тока. Условия возникновения и практическое значение.
- •13. Расчет цепи переменного тока с использованием комплексных чисел.
- •14. Свойства цепей с параллельным соединением элементов. Резонанс токов. Условия возникновения. Векторные диаграммы
- •15. Мощности в цепи переменного тока (активная, реактивная и полная). Треугольник мощностей. Коэффициент мощности и его экономическое значение.
- •17. Мощность трехфазной цепи. Расчет трехфазных цепей. Соединение звездой.
- •18. Мощность трехфазной цепи. Расчет трехфазных цепей. Соединение треугольником.
- •19. Метод эквивалентного генератора.
- •20. Методы расчета нелинейных цепей постоянного тока. Последовательное соединение элементов. Параллельное соединение элементов.
- •21. Методы расчета нелинейных цепей постоянного тока. Смешанное соединение элементов.
- •22. Расчет неразветвленных магнитных цепей. Прямая задача.
- •23. Расчет неразветвленных магнитных цепей. Обратная задача.
- •24. Принцип действия трансформатора и его уравнения. Коэффициент трансформации.
- •25. Режимы работы трансформатора. Потери мощности в трансформаторе. Кпд. Внешняя характеристика трансформатора.
- •26. Основные сведения об автотрансформаторах. Общие сведения об измерительных трансформаторах.
- •27. Применение трансформаторов. Условия включения трансформаторов на параллельную работу.
- •28. Конструкция трансформаторов. Технические (паспортные) данные трансформаторов
- •29. Ферромагнитные материалы и их магнитные свойства. Закон полного тока и его применение для расчета магнитного поля.
- •30. Генераторы постоянного тока. Существующие системы возбуждения. Конструкция и принцип действия гпт с независимым возбуждением.
- •31. Рабочие характеристики синхронных генераторов.
- •32. Рабочие характеристики генераторов постоянного тока.
- •33. Конструкция и принцип действия трехфазного асинхронного двигателя. Вращающееся магнитное поле машины.
- •34. Механическая характеристика асинхронного двигателя. Особенности пуска в ход асинхронных двигателей
- •35. Регулирование частоты вращения асинхронных двигателей. Коэффициент мощности асинхронных двигателей.
- •36. Конструкция и принцип действия машины постоянного тока, области применения, принцип обратимости машин.
- •37. Двигатели постоянного тока. Конструкция и принцип действия. Способы пуска двигателя в ход. Способы регулирования частоты вращения.
- •38. Генераторы постоянного тока. Существующие системы возбуждения. Принцип и условия самовозбуждения генератора постоянного тока параллельного возбуждения.
- •39. Реакция якоря генератора постоянного тока и ее влияние на внешнюю характеристику.
- •40. Конструкция и принцип действия синхронных машин с электромагнитным возбуждением. Принцип обратимости.
- •41. Реакция якоря синхронного генератора и ее влияние на внешнюю характеристику в зависимости от вида нагрузки.
- •42. Принцип действия синхронного двигателя. Механическая характеристика. Особенности пуска в ход синхронного двигателя.
- •44. Источники вторичного электропитания. Основные функциональные узлы. Классификация ивэп.
- •45. Общие понятия об усилителях электрических сигналов, основные параметры, классы усиления.
- •46. Электрические измерения в однофазных и трехфазных цепях, классы точности и системы измерительных приборов.
- •47. Система электроснабжения потребителей электроэнергии. Типы электрических станций. Достоинства, недостатки
- •48. Приемники электроэнергии. Классификация и общие характеристики.
- •49. Электрические сети. Классификация и основные сведения.
- •Назначение, область применения
- •Масштабные признаки, размеры сети
- •Род тока
- •50. Полупроводниковые выпрямители переменного тока. Классификация. Принцип действия.
- •51.Основы электрического привода, основные понятия, структура электропривода и классификация. Уравнение движения.
- •52. Режимы работы электродвигателей. Выбор мощности электродвигателя по нагреву.
- •53. Способы измерения мощности трехфазной цепи.
- •54. Трехфазные трансформаторы. Особенности конструктивных исполнений. Принцип действия. Области применения.
1. Основные термины и определения применяемые в электротехнике.
Электрический ток (I) это направленное движение свободных носителей электрического заряда. В металлах свободными носителями заряда являются электроны, в плазме, электролите - ионы. Единица измерения силы тока – ампер (А). Условно за положительное направление тока во внешней цепи принимают направление от положительно заряженного электрода (+) к отрицательно заряженному (-). Если направление тока в ветви неизвестно, то его выбирают произвольно. Если в результате расчета режима цепи, ток будет иметь отрицательное значение, то действительное направление тока противоположно произвольно выбранному.
Электрическое напряжение (U) это характеристика работы сил поля по переносу электрических зарядов через внешние элементы цепи. При этом электрическая энергия преобразуется в другие виды. Единица измерения – вольт (В). За положительное направление напряжения приемника принимают направление, совпадающее с выбранным положительным направлением тока. В электрических цепях и энергетических системах напряжение может иметь значения в пределах от нескольких вольт до сотен тысяч вольт.
Электродвижущая сила Е (ЭДС) характеризует способность индуцированного поля вызывать электрический ток. Единица измерения – вольт (В). Источники энергии могут быть источниками ЭДС и тока. В данном пособии рассматриваются только источники ЭДС. Источник ЭДС характеризуется двумя параметрами: значениями ЭДС (Е) и внутреннего сопротивления (r0). Источник ЭДС, внутренним сопротивлением которого можно пренебречь, называют идеальным источником. Реальный источник ЭДС имеет определенное значение внутреннего сопротивления. У источника ЭДС внутренне сопротивление значительно меньше сопротивления нагрузки (RН) и электрический ток в цепи зависит главным образом от величины ЭДС и сопротивления нагрузки. Источник
ЭДС
име
Вольтамперная характеристика источника ЭДС имеет вид
Рис. 1
Зависимость между напряжением на зажимах источника и его ЭДС имеет вид
U = E - r0 I (для реального источника ЭДС)
U = E (для идеального источника).
Электрическое сопротивление R это величина, характеризующая противодействие проводящей среды движению свободных электрических зарядов (току). Единица измерения – Ом. Величина, обратная сопротивлению, называется электрической проводимостью G. Единица измерения – сименс (См).
Электрическое сопротивление проводника определяется по формуле
,
где l – длина;
S – поперечное сечение;
- удельное сопротивление.
Электрическая энергия – это способность электромагнитного поля производить работу, преобразовываясь в другие виды энергии. Это самый совершенный и универсальный вид энергии, сравнительно легко преобразовывающийся другие виды энергии. Единица измерения – Джоуль [Дж]=[1Кл*1В]. Физический смысл – работа по перемещению заряда 1Кл между точками с разностью потенциалов 1В.
Мощность – физическая величина, характеризующая интенсивность преобразования энергии из одного вида в другой в единицу времени. Единица измерения – Ватт [Вт]. Различают мощность источника P=E*I и мощность приемника P=I2*R=U2/R=U*I.
