Постпроцессорная обработка результатов
Результаты решателя в виде нескольких таблиц могут быть записаны в текстовый или бинарный- файлы, не пригодные для чтения. Поэтому существуют следующие возможности представления результатов.
• Области напряжений, деформаций, температур и т.д. отображаются функциями визуализации в виде геометрии или сетки .
• Функции выделения, рекомбинации и сортировки параметров позволяют найти предельные значения полей напряжений, деформаций или температур.
• Иногда инженера могут заинтересовать те значения, которые не вошли как результаты решателя в файл отчета и которые могут быть выведены из него в результате математических манипуляций. Им могут быть назначены дополнительные расчеты.
Приведем некоторые параметры настройки постпроцессора.
• Визуализация деформированного состояния на исходном объеме.
Режим отображения результата (способ представления):
градуированное цветоделение до 10 цветов;
тонирование - спектр от синего до красного;
символьный - стрелки вектора в узлах или многогранники, размер и цвет которых отражают величину соответствующего значения;
цифровой - значения параметра располагаются в центре элемента или в узле.
• Графическое представление значений результата в виде:
объемной оболочки - показывает значения на внешней оболочке объема, например, для визуализации деформаций показывает изменение результата, уменьшая и увеличивая его значения от нулевого до максимального;
плоского сечения - показывает значения внутри объема, разрезая геометрию плоскостью и двигая это сечение в любом на правлении внутри объема от места максимального значения до места минимального значения; -
патча поверхности - показывает результаты внутри объема в виде изоповерхности, она искажается, изображая значения от нижней границы до верхней границы результата.
Анимация любого из графических режимов.
Листинг результатов - интерактивное окно с числовыми результатами, в динамическом режиме позволяет вести обработку полученных значений, например, сортировать полученные значения по порядковому номеру и величине или в каких-либо границах значений (ограниченном поле значений).
Оценка погрешности результатов в линейном статическом анализе для объемных элементов. Ошибки представляются в виде:
абсолютной ошибки (в единицах параметра, например давления);
относительной ошибки напряжения (в %);
количества элементов, имеющих совокупную ошибку, более 10%.
Эти данные могут быть получены с помощью специальной настройки контроля решателя на этапе задания условий анализа.
Анализ динамических процессов систем управления
В отдельную группу задач анализа можно выделить исследования динамических процессов, протекающих в системах автоматического регулирования и управления наукоемких машиностроительных изделий.
К таким изделиям можно отнести тепловые энергетические установки, ядерные установки различного назначения, системы автоматического управления следящих приводов и роботов, двигателей, а также других технических систем, описание динамики которых может быть выполнено методами структурного моделирования. Для решения задач этого класса широкое применение находят специальные программные комплексы MATRIX, Simulink, VisSim, МВТУ и др.
Рассмотрим некоторые особенности работы с такими комплексами на примере программы МВТУ, разработанной в МГТУ им. Н. Э. Баумана.
Здесь возможно решение целого ряда задач:
моделирование;
оптимизация;
анализ;
контроль и управление (программа позволяет создавать виртуальные аналоги измерительных приборов и управляющих устройств контроля и управления переходными процессами).
Библиотеки типовых блоков. Вся совокупность типовых блоков программного комплекса условно может быть разделена на две группы: общетехническая библиотека и специализированные библиотеки. Общетехническая библиотека типовых блоков содержит следующие каталоги:
- субструктуры;
динамические звенья;
нелинейные звенья;
ключи;
логические звенья;
функции математические;
дискретные звенья;
источники входных воздействий;
операции математические;
векторные операции;
данные и т.д.
В каждом из перечисленных каталогов содержатся типовые или специально разработанные модели элементов динамических систем.
Например, из каталога «Динамические звенья» можно выбрать: динамическое звено общего вида, идеальное интегрирующее звено, интегратор с насыщением, интегратор с изменяемыми начальными условиями, апериодическое звено первого порядка, колебательное звено, инерционно-интегрирующее звено, инерционно-дифференцирующее звено, инерционно-форсирующее звено, переменные состояния, идеальное запаздывающее звено.
В каталоге «Нелинейные звенья» хранятся следующие звенья: квадратичный функционал качества, линейное с насыщением, линейное с зоной нечувствительности, линейное с насыщением и зоной нечувствительности, релейное неоднозначное, релейное неоднозначное с зоной нечувствительности, зазор, люфт, излом, произвольная однозначная нелинейность, запоминание минимума, запоминание максимума, запоминание макс./мин. из двух скалярных сигналов, запоминание макс./мин. из п векторных сигналов, переменное транспортное запаздывание, дифференцирование, ограничение скорости изменения, дельта-функция и др.
Специализированные библиотеки содержат каталоги различных приложений: «Реакторные блоки», «Логика АСУТП ВВЭР», «Роботы», «Элементы подземных хранилищ газа». Ряд фрагментов структурных схем, сформированных в процессе выполнения прикладных НИР и ОКР, хранится в виде субмоделей в отдельных каталогах. Фактически эти каталоги представляют собой дополнительные специализированные библиотеки, из элементов которых могут быть скомпонованы значительные фрагменты новых структурных схем.
Основные этапы работы с программой. Формирование и редактирование структурной схемы проекта, ввод параметров звеньев, начальных условий, выбор метода и параметров интегрирования осуществляется как с помощью специальных графических процедур, так и посредством команд. Структурную схему исследуемой задачи рекомендуется предварительно выполнить на черновике примерно в том же виде, в каком она должна быть представлена на экране монитора.
Формирование структурной схемы и параметров ее элементов, выбор метода, параметров интегрирования и т.п. целесообразно проводить в следующей последовательности.
• В окне монитора, предназначенного для формирования схемы моделирования, необходимые элементы размещают примерно так, как они должны быть расположены в структурной схеме.
• Предварительно подобранные элементы схемы можно перекомпоновать, используя процедуры их перемещения, изменения ориентации элементов, изменения их размеров и др.
• Информационные связи между элементами указывают на экране монитора, манипулируя «мышью».
• Параметры элементов (коэффициенты усиления, постоянные времени, начальные условия и т.д.) задают на структурной схеме.
• Для расчета процессов указывают конечное время интегрирования, метод интегрирования и другие параметры.
• Подготовленную схему (проект) необходимо сохранить, запустить задачу на расчет, наблюдая и анализируя результаты протекания процессов.
В качестве примера, демонстрирующего особенности использования программного комплекса, остановимся на задаче моделирования динамики системы автоматического регулирования ядерной паропроизводящей установки (ЯППУ) малой мощности с реактором интегрального типа. В процессе проектирования системы автоматического регулирования исследовались проблемы расчетного обоснования ядерной безопасности ЯППУ в переходных режимах и в проектных аварийных ситуациях (обесточивание, «стоп-вода», «стоп-пар», отключение главного циркуляционного насоса и секций парогенератора и др.). Структурная схема моделируемой системы скомпонована с помощью элементов каталога «Реакторные блоки», а субмодели «Кинетика нейтронов», «Система управления», «Теплофизические параметры АЗ» и т.д., представляющие собой сложные многоуровневые структуры, набраны из каталогов общетехнической библиотеки типовых блоков. Общее число элементов в схеме - более 370, функциональных переменных - около 3000. На этом же рисунке размещены окна визуализации поведения физических параметров системы автоматического регулирования в процессе моделирования.
Инженерный анализ в металлургическом машиностроении
Проведение инженерного анализа необходимо не только при проектировании новых металлургических объектов, но и в не меньшей мере при реконструкции уже существующего оборудования. В то же время, стоит заметить, что специализированных средств инженерного анализа именно в металлургическом машиностроении на сегодняшний день не разработано, поэтому приведем примеры существующих систем анализа и их возможностей, которые могут быть полезны при проектировании новых и реконструкции уже существующих металлургических агрегатов.
Функции CAE-систем связаны с проектными процедурами анализа, моделирования и оптимизации проектных решений. В состав таких систем включают программы для выполнения следующих процедур:
моделирование полей физических величин, в том числе анализ прочности, деформаций;
расчет состояний моделируемых объектов и переходных процессов в них;
имитационное моделирование сложных производственных систем на основе моделей массового обслуживания (цепи Маркова) и сетей Петри.
Сеточная модель, представляющая собой совокупность узлов и элементов, разбивает конструкцию на отдельные конечные элементы. Другими словами, сеточная модель натягивается на расчетную модель. Примеры разбиения конструкции на конечные элементы (создания сеточной модели) представлены на рис. 4.1 и 4.2.
|
Рис.4.1. Геометрическая модель опорного валка клети "кварто" с натянутой на нее сеточной моделью |
Если классифицировать задачи инженерного анализа при проектировании или реконструкции металлургического оборудования и требования к их реализации, то это:
несложные задачи, например статический расчет без сложных процессов (например, расчет напряженно-деформированного состояния). Для их решения годятся специализированные программы анализа, например. АРМ WinMachine, Autodesk Mechanical Desktop. Первый этап – наложение ограничений и сил (рис. 1, а приложения); второй этап – наложение сетки на твердотельную модель станины (рис. 4.2); третий этап – отображение результатов (напряжений, деформаций) в цвете вместе с цветовой шкалой (рис. 2, 3 приложения), также можно отобразить изгиб в результате приложенной нагрузки (рис. 1, б приложения), можно отобразить напряжение, деформацию в сечении или на половине детали.
АРМ WinMachine, Autodesk Mechanical Desktop довольно просты в использовании и обучении, не требуют глубоких знаний методов конечных элементов. Но при этом отсутствует ассоциативность CAE-системы с CAD, т.е. изменение CAD-модели не приводит к изменениям в расчетной модели. Этого недостатка нет у систем инженерного анализа, встроенных в так называемые "тяжелые" САПР, – универсальных систем анализа;
сложные по постановке и реализации задачи, например задачи динамики с большими деформациями и ударными нагрузками. Такие задачи требуют применения мощных полнофункциональных систем инженерного анализа – программных систем проектирования.
Выбрав специализированную или универсальную систему, невозможно решить сложные задачи, а выбрав мощную CAE-систему, экономически нерентабельно решать задачи среднего уровня, занимая мощные вычислительные ресурсы технического обеспечения. Если использовать системы трех уровней, то необходимо решать вопрос: как осуществлять взаимодействие между ними? Кроме того, необходимо использовать собственные методики расчета металлургического оборудования.
Таким образом, хотя и имеется большой спектр систем для инженерного анализа, но нельзя однозначно выделить одну из них и рекомендовать использовать при проектировании металлургических агрегатов только ее.
В дальнейшем в качестве примера рассмотрим отечественный пакет программ АРМ WinMachine и оценим возможности применения его при проектировании и модернизации металлургического оборудования.
Возможности пакета программ АРМ WinMachine
Пакет программ АРМ WinMachine предназначен для выполнения различных расчетов машин, механизмов и конструкций и полноценного инженерного анализа оборудования с целью выбора его оптимальных параметров, а также оформления и хранения конструкторской документации. Основные виды расчетов, выполняемые с помощью пакета:
энергетических и кинематических параметров;
прочности, жесткости и устойчивости;
выносливости при переменных режимах нагружения;
вероятности, надежности и износостойкости;
динамических характеристик.
Система АРМ WinMachine построена по модульному принципу, каждый модуль может работать как самостоятельно, так и в комбинации с другими. Ниже рассмотрим некоторые из них.
Модуль АРМ Graph для выполнения графической части конструкторской документации и представляет собой плоский 2D – графический редактор. Он используется для подготовки исходных данных при работе других модулей системы. С этой целью в каждом из прикладных расчетных модулей имеется возможность импорта графической информации. В модуле реализованы стандартные возможности, свойственные 2D – графическим редакторам. Кроме того, редактор дополнен набором библиотек стандартных элементов, а также возможностью параметрического задания графического объекта. Она позволяет автоматически прорисовывать геометрические объекты, если после выполнения расчетов они были заданы параметрически. При работе в таком режиме автоматически сохраняется последовательность выполняемых команд и их атрибутов. Атрибутам присваиваются имена и задаются числовые и функциональные соотношения, причем последние могут быть описаны произвольными аналитическими функциями, для чего имеется специальный редактор анализа и преобразования аналитических данных. Стандартные конструктивные графические элементы, оформленные в виде параметрических объектов, включены в состав единой базы данных и функционируют вместе с ней как в режиме расчета, так и в режиме прорисовки. В случае параметризованного блока появляется возможность хранения библиотек стандартных конструкций. При вставке параметрических моделей пользователь задает значения переменных, по которым строится сама модель.
Модуль АРМ MechData представляет собой информационно-графическую базу данных. В информационной части содержаться числовые значения, характеризующие величины допусков и посадок, чистоту обработки поверхностей и так далее. В графической базе данных размещена геометрическая и цифровая информация, позволяющая выполнять чертежи стандартных изделий, деталей, узлов, различных комплектующих; с ее помощью автоматизируется процедура оформления чертежей, заполнения штампов и спецификаций. Графическая база данных работает совместно с графическим редактором АРМ Graph, все модели в базе представлены в параметрическом виде.
Отметим, что в раздел базы данных "Сортаменты" включены поперечные сечения прокатных профилей, выпускаемых в России.
АРМ MechData – открытая система, имеется возможность исправлять и дополнять базу данных, хранить несколько стандартов (в настоящее время поддерживает ГОСТ и некоторые СНиПы).
Модуль АРМ MatData представляет собой информационную базу данных, в которой содержатся числовые значения, характеризующие механические свойства материалов.
Модуль АРМ DOCs – модуль, позволяющий автоматизировать конструкторскую документацию, хранить, просматривать, осуществлять поиск и редактирование технической документации.
Модуль АРМ Studio – редактор создания трехмерных поверхностных и твердотельных моделей со встроенным генератором разбивки на конечные элементы. Позволяет импортировать файлы в формате STEP, затем разбить полученную модель на конечные элементы – 3-х угольные изгибаемые пластины для поверхностных моделей, тетраэдры – для твердотельных моделей. В модуле имеется возможность сохранить конечно-элементную сетку вместе с моделью, а затем импортировать ее в другие модули пакета АРМ WinMachine, выполняющие расчеты методом конечных элементов (например, АРМ FEM2D и АРМ Structure3D). Таким образом, при проектировании металлургического оборудования возможно создать его твердотельную модель в любой CAD-системе, поддерживающей формат STEP, затем импортировать ее в АРМ Studio и подготовить конечно-элементную сетку для дальнейших расчетов, далее импортировать в расчетный модуль и выполнить расчет напряженно-деформированного состояния конструкции. Недостатком модуля АРМ Studio является невозможность создания конечно-элементной сетки для узла или машины в целом, то есть отсутствует возможность работать со сборками, разбить на конечные элементы можно только деталь.
Модуль АРМ Spring служит для расчета и проектирования пружин, с помощью него можно рассчитать и вычертить пружины сжатия, растяжения и кручения, плоские и тарельчатые пружины, торсионы.
Модули АРМ Cam и АРМ Slider предназначены для расчета и проектирования кулачковых и рычажных механизмов произвольной структуры с автоматической генерацией чертежей.
Модуль АРМ Joint – модуль, служащий для расчета и проектирования соединения деталей машин и элементов конструкций, позволяющий выполнить комплексный расчет всех типов резьбовых, сварных, заклепочных деталей, соединений деталей вращения. Для металлургических объектов характерны многочисленные резьбовые соединения (в основном, болтовые, шпилечные, реже винтовые), применяемые как для соединения деталей, так и для крепления корпусных деталей металлургических машин к фундаменту (например, станин рабочих клетей и шестеренных клетей прокатного стана). Соединения деталей вращения (в основном, цилиндрической и конической формы) присутствуют практически во всех системах приводов металлургических машин. Конструктивно они выполняются как соединения с натягом цилиндрической или конической формы (втулки), шлицевые и шпоночные соединения разных типов, штифтовые радиальные и осевые соединения. В модуле для выбранного соединения выполняются проектировочные и проверочные расчеты. При этом под первым видом расчетов понимается комплекс вычислений основных геометрических размеров, а при втором находятся коэффициенты запаса. Критериями расчета резьбовых соединений являются условие отсутствия сдвига и раскрытия сопряженных поверхностей, статическая и усталостная прочность элементов соединения. Критериями расчета деталей вращения могут быть условие отсутствия сдвига, условие появления зазора в сопряженных поверхностях, статическая и усталостная прочность элементов соединения или совокупность перечисленных критериев.
Для резьбовых соединений с болтами, установленными с зазором, рассчитываются сила затяжки болта; максимальная нагрузка, действующая на болт; максимальное давление на стык; диаметр болта [47]. При проверочном расчете добавляются коэффициент запаса выносливости и коэффициент запаса прочности. Для резьбовых соединений с болтами, установленными без зазора, рассчитываются диаметр болта; максимальная сдвигающая нагрузка на болт; минимальная толщина пластины. При проверочном расчете добавляется коэффициент запаса прочности по сдвигу. В обоих случаях на стыке выводится карта распределения давления по поверхности стыка.
В шпоночных соединениях деталей вращения рассчитываются геометрические параметры шпонки (по ним выбирается шпонка из базы данных), действующие напряжения в соединении (сравниваются с допускаемыми напряжениями для выбранных материалов). В соединениях цилиндрических деталей с натягом определяются минимальный требуемый натяг из условия не раскрытия/сдвига стыка; максимальный натяг из условия контактной прочности деталей соединения; набор выбранных из базы данных посадок (для каждой рассчитывается максимальная и минимальная сила, необходимая для сборки соединения). В случае соединения конических деталей с натягом рассчитывается необходимая сила затяжки; перемещение втулки при затяжке; коэффициент запаса по текучести втулки. Для штифтовых соединений определяются диаметры штифтов; действующие напряжения в соединении; допускаемые напряжения для выбранных материалов соединения.
Модуль АРМ FEM2D используется для расчета напряженно-деформированного состояния плоских деталей методом конечных элементов, расчета температурного поля в условиях стационарной теплопроводности, решения задач кручения стержня, нагруженного изгибающим моментом и системой поперечных сил. Результаты представляются либо в табличной форме, либо в графической – в виде карты распределения деформаций и перемещений, полей температур.
Модуль АРМ Beam предназначен для расчета и проектирования конструкций типа балка комбинированными методами. Многие детали металлургического оборудования могут быть представлены в виде балок различного поперечного сечения, нагруженных силами и моментами, имеющих различные варианты закрепления (опоры). При этом балка может состоять из нескольких участков с разными поперечными сечениями и быть произвольно нагруженной. В модуле имеется собственный графический редактор, позволяющий создавать и редактировать поперечные сечения балки, вводить действующие на балку нагрузки, располагать опоры, задавать внешние массы и моменты инерции (в случае расчета поперечных и крутильных колебаний). Выполняются проверочные расчеты по заданной геометрии и нагрузкам: расчет перемещений – энергетическим методом (методом Мора); раскрытие статической неопределимости – методом сил; расчет напряжений кручения – методом конечных элементов (разбивка на треугольные конечные элементы выполняется автоматически); расчет напряжений изгиба и сдвига – методом момента инерции. Методом начальных параметров выполняются динамические расчеты, частоты собственных колебаний и собственные формы балки.
В результате работы модуля можно получить следующие параметры: реакции в опорах; распределение изгибающих моментов и углов изгиба по длине балки; распределение моментов кручения и углов поворота; распределение продольных и поперечных деформаций, эквивалентных напряжений и поперечных сил; частоты собственных колебаний; построить карты напряжений в любом произвольном сечении по длине балки, графики собственных форм балки.
АРМ Trans – модуль проектирования передач вращения, предназначенный для расчета зубчатых передач различных типов (в том числе червячных), а также ременных и цепных передач, и генерации чертежей элементов этих передач в автоматическом режиме. Заметим, что подобные расчеты очень актуальны для металлургических машин, имеющих электромеханический привод, практически всегда включающий в себя зубчатые передачи (в том числе в редукторах или мультипликаторах), а в случае привода валков, правильных машин - еще и устройства для разделения крутящего момента (шестеренные клети).
Модули АРМ Bear и АРМ Plain служат для расчета и анализа подшипников: первый – неидеальных подшипников качения всех известных типов, второй – радиальных и упорных подшипников скольжения, работающих в условиях жидкостного (или полужидкостного) трения. Для металлургических агрегатов в качестве опор (для валов редукторов, прокатных валков, роликов рольгангов и так далее) применяются подшипники того и другого типа.
В АРМ Bear выполняется комплекс проверочных расчетов по известной геометрии подшипника. Можно рассчитать абсолютное перемещение центра подшипника в осевом, радиальном и боковом направлении под действием внешних сил; наибольшие контактные напряжения в контакте тел качения с обоймой; долговечность подшипника; нормальные силы, действующие на тела качения; момент трения; количество тепла, выделенное в подшипнике в результате действия сил трения; потери мощности. Для вывода результатов используются таблицы, графики, гистограммы, пространственные поля положений центра подшипника, анимация движения элементов подшипника.
В модуле АРМ Plain расчет подшипников жидкостного трения производится путем решения уравнения Рейнольдса и уравнения равновесия при ламинарном течении жидкости. Расчет подшипника полужидкостного трения основан на решении уравнений теплопередачи и исследовании процессов тепловыделения. С помощью модуля определяются конструктивные параметры подшипника, распределение и оптимальное значение радиальных и осевых зазоров, действительный коэффициент трения и потери на трение, параметры системы смазки (толщина масляного клина, максимальная и средняя температуры масла и его расход).
АРМ Shaft – модуль проектирования и анализа валов и осей, к которым могут быть отнесены многие детали металлургических машин, являющиеся телами вращения (чаще всего формы, близкой к цилиндрической, например, прокатные валки, ролики правильных машин и рольгангов). Модуль имеет собственный графический редактор для задания геометрии валов и осей (включающий примитивы цилиндрических и конических участков, фаски, галтели, канавки, отверстия, участки с резьбой, шпонки, шлицы и так далее) позволяет вводить действующие на вал нагрузки (сосредоточенные и распределенные радиальные силы, осевые силы, изгибающие и крутящие моменты) и размещать опоры. С помощью АРМ Shaft можно рассчитать реакции в опорах, деформированное состояние вала, напряженное состояние при статическом нагружении, коэффициент запаса по усталостной прочности, собственные частоты и собственные формы вала; построить эпюры моментов и углов изгиба, моментов кручения и углов закручивания, распределения поперечных сил.
Напряженное и деформированное состояние вала рассчитываются методами сопротивления материалов: деформированное состояние описывается методом Мора; статическая неопределимости системы раскрывается методом сил; статическая прочность оценивается по полученным энергетическим методом эквивалентным напряжениям. Собственные частоты и собственные формы определяются методом начальных параметров. Расчет усталостной прочности предусматривает нахождение коэффициента запаса прочности в сечениях вала по его длине, при этом внешняя нагрузка может быть как постоянной, так и переменной.
Модуль АРМ Drive предназначен для расчета и проектирования привода произвольной структуры, планетарных и волновых передач. С его помощью проводится комплексный расчет кинематических характеристик и проектирование как привода в целом, так и его отдельных элементов (подшипников качения, передач и валов), с автоматической генерацией чертежей отдельных деталей и привода в сборе (включая корпусные изделия). С использованием этого модуля возможно решать задачи проектирования и реконструкции электромеханического привода металлургических машин практически любой конструкции, включая адаптивный и рекуперативный.
АРМ Structure3D – модуль расчета и проектирования пластинчатых, оболочечных, стержневых конструкций и твердотельных моделей методом конечных элементов. В нем можно рассчитать напряженно-деформированное состояние конструкций в статическом режиме, выполнить расчеты на устойчивость и определить собственные частоты, проанализировать напряженно-деформированное состояние конструкции при произвольном динамическом нагружении. В модуль могут быть импортированы конструкции и их элементы (например, поперечные сечения) в DXF-формате, созданные в CAD-системах. Кроме того, в модуль может быть импортирована модель объекта с конечно-элементной сеткой, сгенерированная в модуле АРМ Studio. В модуле имеется собственный графический редактор для создания конструкций и задания сечений стержневых элементов, при этом вычисляются все характеристики сечения, определяется его ориентация относительно осей. Пространственное представление моделей и результаты расчета визуализированы.
К элементам конструкции при помощи встроенного редактора могут быть приложены следующие силовые факторы:
сосредоточенные сила и момент (как к узлу, так и в произвольной точке);
распределенные нагрузки по длине стержня (осевая сила, поперечная сила, распределенный момент кручения);
нагрузки вызванные смещением опор;
нормальная распределенная сила, действующая на пластину;
ветровая и снеговая нагрузки на пластину.
При расчетах можно учесть собственный вес каждого из элементов.
Условия закрепления конструкции могут быть произвольными как по характеру, так и по местоположению.
Результаты расчетов представляются в наглядной форме при помощи визуализаторов:
напряженно-деформированное состояние модели в целом – в виде карт напряжений и деформаций (см. рис. 4 в приложении), в виде изолиний и эпюр;
напряженно-деформированное состояние конструкции в текущем сечении – в виде карты напряжений и деформаций;
силовые факторы и деформации (линейные и угловые) в узловых точках – в виде изолиний или эпюр;
распределение моментов изгиба и кручения, поперечных сил по длине стержня – в виде графиков.
Кроме указанных выше расчетов, в модуле можно определить частоты собственных колебаний, выполнить расчет устойчивости, провести расчеты в условиях вынужденного нагружения и в области больших перемещений. Расчет вынужденных колебаний позволяет получить карты напряжений и деформаций в режиме реального времени, просмотр их выполняется в анимационном режиме.
В модуле возможно выполнить расчеты многих деталей металлургических машин, начиная от корпусных (например, корпусов редукторов, станин рабочих клетей прокатных станов) до элементов технологического оборудования.
Анализ возможностей пакета программ АРМ WinMachine показывает, что во многих случаях данный пакет может быть использован для проектирования и расчетов металлургического оборудования. Особого внимания достойна возможность выполнения расчетов методом конечных элементов с помощью приведенной выше технологии, в качестве основы для которых служит трехмерная твердотельная модель детали. Однако отсутствие части расчетов (например, контактных напряжений, температурных и остаточных напряжений) и возможности работать с целыми узлами, машинами (сборками) ограничивает применение пакета в области металлургического машиностроения.
