- •1.Качественные особенности живой материи. Уровни организации живого.
- •2. Теория происхождения жизни на Земле. Основные этапы развития жизни на Земле(химический, биологический предбиологический, социальный)
- •3. Прокариоты и эукариоты. Клеточная теория, история и современное состояние, ее значение для биологии и медицины.
- •4.Клетка - основная форма организации живой материи. Основные структурные компоненты эукаритической клетки.
- •5. Хромосомы - структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе.
- •8. Половое размножение у простейших. Конъюгация и копуляция.
- •9. Половое размножение у многоклеточных. Морфофизиологические особенности половых клеток. Процесс оплодотворения, биологическое значение.
- •10. Сперматогенез. Цитологическая и цитогенетическая характеристика. Биологическое значение полового размножения.
- •11.Оогенез. Цитологическая и цитогенетическая характеристика. Биологическое значение полового размножение.
- •12. Оплодотворение. Партеногенез. Формы и распространенность в природе.
- •13. Особенности морфологического функционального строения хромосом. Гетеро- и эухроматин.
- •14. Кариотип и идиограмма хромосом человека. Характеристика кариотипа человека в норме.
- •14. Предмет, задачи, методы генетики. Этапы развития генетики. Роль отечественных ученых в развитии генетики.
- •15.Мейоз. Особенности 1 и 2 деления. Биологическое значение
- •16. Первый и второй законы Менделя. Закон чистоты гамет. Менделирующие признаки человека. Примеры. Аутосомно-доминантный и аутосомно-рецессивный типы наследования.
- •17. Третий закон Менделя. Цитологические основы универсальности законов Менделя.
- •18. Аллельные гены. Определение. Форма взаимодействия. Множественный аллелизм. Примеры. Механизм возникновения.
- •19. Наследование групп крови. Наследование резус-фактора. Резус конфликт.
- •20. Неаллельные гены. Формы их взаимодействия. Примеры.
- •21. Закономерности наследования сцепленных признаков. Опыты Моргана. Хромосомная теория наследственности.
- •22. Полное и неполное сцепление генов. Понятие о генетических картах хромосом. Метод соматической гибридизации клеток и его применение для картированных хромосом человека.
- •24.Генетические механизмы определения пола. Переопределение пола.
- •31. Тонкая структура генов. Особенности строения про- и эукариот. Понятие о семействе генов и генном кластере.
- •32. Принцип регуляции генной активности на примере прокариот (модель оперона) и эукариот.
- •33. Генная инженерия. Задачи. Методы, достижения и перспективы.
- •34. Наследственность и изменчивость – функциональные свойства живого, их диалектическое единство. Характеристика диплоидного и гаплоидного набора хромосом.
- •36. Комбинативная изменчивость. Её значение в обеспечении генетического разнообразия людей. Медико-генетические аспекты семьи.
- •37. Мутационная изменчивость, классификация мутаций. Мутации в половых и соматических клетках.
- •38. Геномные мутации. Механизм их возникновения.
- •39. Структурные нарушения (абберации) хромосом. Механизм возникновения. Значение для биологии и медицины.
- •40. Генные мутации, молекулярные механизмы их возникновения, частота мутаций в природе. Естественные антимутационные барьеры.
- •41. Спонтанные и индуцированные мутации. Их биологическая роль. Факторы мутагенеза. Классификация. Примеры. Оценка и профилактика генетического действия лучистой энергии.
- •43. Генотип как целое. Ядерная и цитоплазматическая наследственность.
- •44. Генетика популяций. Закон Харди-Вайнберга. Дрейф генов.
- •Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.
- •1. Исследование кариотипа.
- •46. Наследственные болезни человека. Принципы лечения, методы диагностики и профилактики. Примеры.
- •48. Биология развития. Жизненные циклы организмов как отражение их эволюции. Онтогенез и его периодизация. Прямое и непрямое развитие.
- •50. Основные этапы эмбриогенеза. Зародышевые листки и их производные. Понятие об осевых органах.
- •55. Роль эндокринных желез (щитовидной, гипофиза, половых) в регуляции жизнедеятельности организма постэмбриональном периоде.
- •56. Биологические и социальные аспекты старения и смерти. Механизмы старения. Проблемы долголетия.
- •57. Смерть как заключительный этап онтогенеза. Клиническая и биологическая смерть. Реанимация
- •58. Регенерация как свойство живого к самообновлению и самовосстановлению. Классификация регенерации.
- •В зависимости от уровня биологической организации поврежденных структур:
- •В зависимости от фактора, вызвавшего процесс:
- •59. Формы репаративной регенерации. Способы её осуществления. Проявление регенерационной способности в фило- и онтогенезе. Регуляция регенерации. Методы стимуляции регенерации.
- •60.Понятие о гомеостазе. Структурый и физиологический гомеостаз. Роль нервной и эндокринной систем.
- •61. Биологические ритмы. Медицинское значение хронобиологии.
- •62. История становления эволюционной идеи. Сущность представления ч. Дарвина о механизме органической эволюции. Современный период синтеза дарвинизма генетики.
- •63. Понятие о виде. Критерии вида. Популяционная структура вида. Генетическая и экологическая характеристика популяции.
- •65. Естественный отбор в популяциях. Его формы и значение.
- •71. Эволюция и онтогенез. Биологический закон Мюллера-Геккеля.
- •72. Общие закономерности филогенеза систем органов позвоночных и человека (основные понятия и методы эволюционной морфологии). Принципы преобразования органов.
- •73. Филогенез головного мозга у хордовых. (распечатка)
- •74. Филогенез пищеварительной и дыхательной систем у хордовых. (распечатка)
- •75. Филогенез кровеносной системы у хордовых. (распечатка)
- •76. Филогенез мочеполовой системы у хордовых.
- •77. Онтофилогенетическая обусловленность пороков развития органов и систем человека. Правила корреляции в эволюции.
- •78. Антропогенез. Биологическая и социальная сущность человека. Закономерности антропогенеза.
- •79. Понятие о расах и видовое единство человека. Современная классификация и распространение человеческих рас.
- •80.Определение науки экологии. История возникновения, предмет, задачи.
- •81. Классификация экологических факторов. Формы взаимоотношения между живыми организмами в природе.
- •87. Биосфера. Организация, границы состав биосферы. Живое вещество: качественная и количественная хар-ки. Функции живого вещества.
- •88. Эволюция биосферы. Ноосфера – высший этап эволюции биосферы.
- •89. Человек и биосфера. Биосфера как среда обитания и источник ресурсов. Хар-ка природных ресурсов.
- •Изменение состава биосферы, круговорота и баланса составляющих ее веществ.
- •Изменение энергетического и теплового баланса биосферы.
- •Изменение флоры и фауны планеты.
- •90. Человечество как активный элемент биосферы- самостоятельная геологическая сила. Основные направления воздействия человека на биосферу.
- •91. Международные и национальные программы по изучению биосферы. Вклад русских ученых в развитие учения о биосфере
- •92.Проблемы охраны окружающей среды и выживания человечествах
- •93. Паразитизм как одна из форм взаимоотношений живых организмов. Основные понятия паразитологии. Классификация паразитических форм животных. Происхождение различных групп паразитов.
- •95. Понятие о трансмиссивных и природноочаговых заболеваниях. Структура природного очага. Биологические принципы борьбы с трансмиссивными и природноочаговыми заболеваниями.
- •96.Простейшие. Классификация. Характерные черты организации. Значение для медицины
2. Теория происхождения жизни на Земле. Основные этапы развития жизни на Земле(химический, биологический предбиологический, социальный)
Возникновение жизни-процесс превращения неживой природы в живую.
Креационизм - сверхъестественное событие, создано Богом.
Стационарное состояние - Согласно этой гипотезе Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень мало; виды также существовали всегда.
Самозарождение - живое из неживого(из ила, мяса,…)
Биогенез -живое только от живого.
Панспермия - космическое зарождение.
Биохимическая эволюция – происхождение в результате химической реакции.
Происхождение эукариот 1.0-1.4 млрд.лет назад.
Симбиотическая гипотеза – основа или клетка-хозяин анаэробный прокариот, способный лишь к амебному движению. Переход к аэробному дыханию связан с наличием митохондрий.
Инвигационная гипотеза - предком эукариотической клетки был аэробный прокариот. Эта гипотеза объясняет наличие в оболочке ядра: митохондирий, хлоропластов, 2-х мембран. Однако не может ответить, почему биосинтез белка в хлоропластах и митоходриях в деталях соответстует таковому в современных прокариотических клетках, но отличаются от биосинтеза белка в цитоплазме.
3. Прокариоты и эукариоты. Клеточная теория, история и современное состояние, ее значение для биологии и медицины.
Клетка– структурная
и функциональная единица жизни, способная
к самообновлению, самовоспроизведению
и развитию.
Клетка может существовать как отдельный организм (бактерии, простейших, некоторые грибы, водоросли) и в составе многоклеточных организмов.
Размеры клеток варьируют в пределах 0,1- 0,23мкм (некоторые бактерии) до 155мм (яйцо страуса в скорлупе). Средние размеры клеток
10-100мкм.
Различают округлые, овальные, многогранные, звездочные, дисковидные и другие формы клеток (рис. 2.2.)
По наличию или отсутствию ядра выделяют прокариотические и эукариотические клетки. Этот термин происходит от греческого слова karion, что означает ядро. Соответственно этому, все живые организмы разделяют на две основные группы: эукариоты и прокариоты.
Прокариоты –это древнейшие одноклеточные организмы, не имеющие оформленного ядра .К ним относятся бактерии и сине-зеленые водоросли.
Эукариоты – все организмы, кроме бактерий и цианобактерий. Они обладают, в отличие от прокариот, оформленным клеточным ядром, ограниченным от цитоплазмы ядерной оболочкой.
Клеточная теория – одно из наиболее важных биологических обобщений, согласно которому все организмы имеют клеточное строение. Клеточная теория наряду с законом превращения энергии и эволюционной теории Чарльза Дарвина является одним из трех великих открытий естествознания XIX века. Клеточное строение впервые наблюдал Р. Гук (1665) у растений и впервые применил термины «клетка». Значительный вклад в изучении клетки внес Антон Левенгук, открывший в 1874 г одноклеточные организмы – инфузории, амебы, бактерии. Он также наблюдал эритроциты крови и сперматозоиды. В начале XIX века целенаправленно изучается внутреннее содержимое клетки. В 1825 г. Ян Пуркине открыл ядро в яйцеклетке птиц. В 1831 г Р.Броун впервые описал ядро в клетках растений, а в 1833 г он пришел к выводу, что ядро является обязательной частью растительной клетки. М. Шлейден в 1838 г установил, что тело растений состоит из клеток, обязательными компонентами которых является ядро. Томас Шванн на основе собственных исследований и данных литературы в 1839 г сделал ряд выводов, которые легли в основу клеточной теории.
ОСНОВНЫЕ ПОЛОЖЕНИЯ КЛЕТОЧНОЙ ТЕОРИИ Т. ШВАННА:
· Все ткани растений и животных состоят из клеток;
· Все клетки образуются и растут по одним и тем же законам;
· Общий принцип развития для элементарных частей организма – клеткообразование.
Клеточная теория получила дальнейшее развитие в работах Р.Вирхова (1858), который предположил:
- клетки образуются из предшествующих материнских клеток;
- вне клетки нет жизни.
И.Д. Чистяков (1874) и Э. Страсбург (1875) открыли деление клетки – митоз, и таким образом, подтвердили предположение Р. Вирхова.
Еще до появления клеточной теории Т.Шванна, К.Бер (1827) открыл яйцеклетку млекопитающих и показал, что многоклеточные организмы начинают свое развитие с одной клетки – оплодотворенной яйцеклетки (зиготы). Следовательно, клетка – не только единица строения, но и единица развития живых организмов.
ОСНОВЫЕ ПОЛОЖЕНИЯ СОВРЕМЕННОЙ КЛЕТОЧНОЙ ТЕОРИИ:
· Клетка – наименьшая структурно-функциональная единица живого;
· Все клетки сходны по строению, химическому составу и обмену веществ
· «каждая клетка из клетки», т.е. новая клетка образуется исключительно
из исходной материнской путем деления;
· Клетка – единица развития живых организмов, так как многие организмы
развиваются из одной клетки – зиготы, споры;
· В многоклеточных организмах клетки специализированы по выполняемой
функции и образуют ткани: из тканей образуются органы, которые тесно
связаны между собой и подчинены нервным и гуморальным системам
регуляции.
ЗНАЧЕНИЕ КЛЕТОЧНОЙ ТЕОРИИ ДЛЯ МЕДИЦЫНЫ.
Создание клеточной теории стало одним из решающих доказательств единства живой природы и дало мощный толчок для развития живой природы на клеточном уровне. В связи с этим клеточная теория сыграла огромную мобилизирующую роль в развитии биологии как науки, а также послужила фундаментом для развития таких дисциплин как эмбриология, гистология, анатомия и физиология.
