- •1. Колебания гармонические, затухающие (записать уравнения для механических и электрических колебаний). Привести схемы.
- •2. Фазовый портрет (вывести уравнения для фазового портрета гармонических колебаний)
- •3. Вынужденные колебания (привести схемы технической реализации и записать уравнения).
- •4. Сложение колебаний. Биения.
- •5. Декремент затухания. Добротность колебательной системы с выводом.
- •Резонанс. Вывод формул для амплитуды и фазе при резонансе. Привести резонансные кривые, проанализировать частотную зависимость.
- •Как рассчитать напряжения на конденсаторе, катушке индуктивности, активном сопротивлении. Волновое сопротивление.
- •Мощность в цепи переменного тока с выводом.
- •Параметрические колебания. Уравнение Матье-Хилла.
- •Релаксационные колебания. Уравнение Ван-дер-Поля.
- •Понятие волны. Волновое число. Вывод уравнения плоской волны.
- •Фазовая и групповая скорость волн.
- •Волновое уравнение и его решение. Плоские и сферические волны. Объемная плотность и плотность потока энергии упругих волн.
- •Стоячие волны. Координаты узлов и пучностей.
- •Эффект Доплера (основной физический смысл).
- •16 Вопрос: Уравнения Максвелла для пустого пространства. Вывод волновых уравнений для электромагнитных волн (эмв).
- •17 Вопрос: Уравнения волны для проекций е и н волн на оси координат (с выводом из уравнений Максвелла).
- •18 Вопрос: Энергия эмв. Вектор Умова. Вектор Умова-Пойнтинга с выводом.
- •19 Вопрос: Импульс, масса электромагнитного поля (с выводом).
- •20 Вопрос: Излучение диполя. Диаграмма направленности излучения диполя. Интенсивность излучения.
- •21 Вопрос: Законы геометрической оптики. Построение изображения в тонкой и толстой линзах, в сферическом зеркале.
- •При преломлении
20 Вопрос: Излучение диполя. Диаграмма направленности излучения диполя. Интенсивность излучения.
Простейшим излучателем электромагнитных волн является электрический диполь, электрический момент которого изменяется во времени по гармоническому закону р = р0 cost,
где р0 - амплитуда вектора р. Примером подобного диполя может служить система, состоящая из покоящегося отрицательного заряда -Q и положительного заряда +Q, гармонически колеблющегося вдоль направления р с частотой ω.
Характер электромагнитного поля диполя зависит от выбора рассматриваемой точки. Особый интерес представляет так называемая волновая зона диполя — точки пространства, отстоящие от диполя на расстояниях r, значительно превышающих длину волны (r » λ), — так как в ней картина электромагнитного поля диполя сильно упрощается. Это связано с тем, что в волновой зоне диполя практически остаются только «отпочковавшиеся» от диполя, свободно распространяющиеся поля, в то время как поля, колеблющиеся вместе с диполем и имеющие более сложную структуру, сосредоточены в области расстояний r λ.
Если волна распространяется в однородной изотропной среде, то время прохождения волны до точек, удаленных от диполя на расстояние r, одинаково. Поэтому во всех точках сферы, центр которой совпадает с диполем, фаза колебаний одинакова, т. е. в волновой зоне волновой фронт будет сферическим (рис. 7.8) и, следовательно, волна, излучаемая диполем, есть сферическая волна.
Рис.7.8.
ропорциональна
(для вакуума), т. е. зависит от
расстояния r
до
излучателя и угла
между направлением радиуса-вектора и
осью диполя. Отсюда следует, что
интенсивность
излучения
диполя в волновой зоне
I
Эта зависимость I от при заданном значении r, приводимая в полярных координатах (рис.7.9), называется диаграммой направленности излучения диполя.
Рис.7.9.
Диполь сильнее всего излучает в направлениях, перпендикулярных его оси ( = π/2). Вдоль своей оси ( = 0 и = π) диполь не излучает вообще. Диаграмма направленности излучения диполя позволяет формировать излучение с определенными характеристиками и используется при конструировании антенн.
21 Вопрос: Законы геометрической оптики. Построение изображения в тонкой и толстой линзах, в сферическом зеркале.
Еще до установления природы света были известны следующие основные законы оптики: закон прямолинейного распространения света в оптически однородной среде; закон независимости световых пучков (справедлив только в линейной оптике); закон отражения света; закон преломления света.
Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно.
Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены.
Закон независимости световых лучей следует из линейности уравнений электродинамики (уравнений Максвелла). Этот закон строго справедлив для вакуума.
Закон отражения: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения.
Рис.
1.12.
Угол падения равен углу отражения. S1
- отражающая поверхность; S2
- плоскость падения; АО
- падающий луч; ОВ
- отраженный луч; ON
- нормаль к отражающей поверхности.
Закон отражения имеет вид:
Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости.
