- •1 Земляные сооружения и технологические схемы работ
- •2.Классификация машин для земляных работ по назначению
- •3. Предельная несущая способность грунта
- •4. Сопротивление грунтов сдвигу.
- •5. Физико-механические свойства грунтов
- •6. Основные схемы резания грунтов.
- •7. Основные теории для расчета сил резания и копания грунтов.
- •8. Расчет сил резанья по теории Ветрова.
- •9.Рачет сил резания элементарным профилем (теория Зелинина)
- •10. Учет дополнительных сопротивлений при резании грунтов ножом с площадкой износа .
- •11.Влияние скорости на сопротивление резанию
- •12. Закономерности резания двумя параллельными профилями .
- •26. Общие сведения о машинах для земляных работ. Классификация мзр, системы управления.
- •27.Выбор силового оборудования мзр. Режимы работы.
- •28. Шагающее оборудование машин для земляных работ.
- •30.Виды рабочего оборудования экскаватора и их схемы.
- •37. Экскаваторы планировщики. Схемы. Параметры.
- •38.Многоковшые экскаваторы. Классификация.
- •39. Многоковшовые экскаваторы продольного действия.
- •40. Многоковшовые роторные траншейные экскаваторы. Схемы.
- •41. Многоковшовый цепной экскаватор поперечного действия. Схемы.
- •42. Роторные поворотные экскаваторы. Схемы. Параметры.
- •43. Одноковшовые погрузчики. Схемы. Параметры.
- •44 Классификация скреперов, технология работ. Схемы
- •45 Конструктивные схемы и параметры скреперов.
- •46 Классификация бульдозеров и технологические схемы работ.
- •47. Конструктивные схемы бульдозеров. Основные параметры.
- •48.Конструктивная схема автогрейдера. Основные параметры.
- •19.Сопротивление качению ведомого и ведущего колеса.
- •(Из конспекта)
- •20.Сопротивление резанию при постоянном сечении стружки.
- •21.Определение категории грунта по сложности разработки. Схема ударника ДорНии.
- •22. Удельное сопротивление грунтов резанию.
- •23.Определение обьёма призмы волочения для бульдозерного отвала.
- •24.Закономерности уплотнения грунтов, компрессионная кривая, влияния влажности.
- •55.Расчёт рабочего оборудования одноковшового экскаватора.
- •57 .Выбор рабочих скоростей экскаваторов поперечного копания
- •58.Определение мощности привода цепи траншейного экскаватора
- •59. Соотношение скоростей роторного траншейного экскаватора и ротора.
- •60.Расчет одноковшовых погрузчиков
- •67.Производительность одноковшового экскаватора.
- •68.Определить производительность бульдозера при планировачных работах
- •69.Определение производительность скреперов:
- •70.Тяговое усилие по сцеплению
- •71.Определение объема призмы волочения для бульдозера:
- •13.Расчёт сил резания периметром
- •15.Расчет сил сопротивления копания ковшом скрепера
- •16. Схема сил при копании отвалом грейдера
- •17. Рекомендации по созданию рабочих органов. Геометрия ножа.
- •18.Сопротивление движению гусеничной машины
- •49. Автогрейдеры. Классификация, схема работ.
- •50. Грейдер-элеваторы. Схемы рабочих органов. Ходовая система. Конвейры.
- •51. Рыхлители, классификация, устройство, схемы работ.
- •52. Машины для уплотнения грунтов. Конструетивные схемы. Параметры.
- •53. Статический расчет одноковшового экскаватора.
- •54. Землесосные установки. Схема работы и передвижения. Выбор диаметра трубопровода.
- •61 Тяговый расчет скрепера
- •62 Тяговый расчет бульдозера.
- •63 64 Общая схема сил, действующих на автогрейдер.
- •Скорость перемещения грунтовой призмы вдоль отвала
- •Подставляя в это выражение значения l1, определяемое из косоугольного треугольника abd, получим
- •66 Расчетная схема рыхлителя и определения усилий копания
- •Земляные сооружения и технологические схемы работ.
- •79. Расчет устойчивости бульдозера.
- •32. Механизмы поворота одноковшового экскаватора.
- •31. Схема исполнительных механизмов экскаваторов с канатным приводом.
- •34. Конструкционные схемы гидравлических экскаваторов.
- •80. Определение суммарного усилия копания для отвалов бульдозера
- •36. Основные параметры и техническая характеристика.
Скорость перемещения грунтовой призмы вдоль отвала
,
м/с где υгр
–
скорость движения грейдера, м/с.
Подставляя в это выражение значения l1, определяемое из косоугольного треугольника abd, получим
или
после преобразований
=0,95ּ(cos30˚
- tg15˚
ּsin30˚)=0,4
м/с
Сечение призмы волочения:
,
м2
где
H
– высота отвала, м;
- угол естественного откоса грунта в
движении,
=30˚;
kзап
– коэффициент накопления грунта перед
отвалом, kзап=0,8.
,
м
где Fр – площадь поперечного сечения срезанного (рыхлого) валика грунта, Fр=0,25 м2; k – коэффициент, учитывающий влияние формы призмы волочения, k=1,0.
м;
м2
Максимальный объем грунта, перемещаемого отвалом за единицу времени, т.е. пропускная способность отвала:
Пот= Fпр.максυпр, м3/ч
Пот= 0,125∙0,4 = 0,05 м3/ч
Грунт перемещается поперек движения грейдера на расстояние:
l=L∙sinα, где L – длина отвала
По данным И.А. Недорезова, наиболее целесообразным очертанием отвала в профиле является дуга окружности радиусом:
,
м где δ
– угол резания δ=30˚; H
– высота отвала.
=
0,5 м.
66 Расчетная схема рыхлителя и определения усилий копания
В процессе работы на дорожно-строительную машину действуют два вида сил: активные силы (сила тяжести машины и рабочего оборудования, сила тяги машины, силы, приложенные к штоку исполнительного гидроцилиндра и.т.п.) и реактивные силы, которые, в свою очередь, подразделяются на внешние (силы взаимодействия рабочих органов и базовой машины с грунтом) и внутренние (силы, действующие в узлах связи отдельных элементов рабочего органа и базовой машины).
При расчете сил, действующих на дорожно-строительную машину, в том числе и на рыхлитель, важно выбрать такое положение, при котором значения реактивных сил в расчетном узле будет максимальным. При расчете рыхлителя принято производить расчет в грех положениях: начало заглубления, рыхление и выглубление.
Расчетное
положение при рыхлении грунта
Координата
центра давления точки приложения
равнодействующей нормальных сил реакции
грунта определяется для случая, когда
машина движется по горизонтальной
поверхности с максимально возможным
заглублением зуба, внезапный наезд на
камень одним зубом, гидроцилиндры
привода рыхлителя заперты. Расчетная
схема представлена на рис.2
Вертикальная составляющая Рх силы сопротивления рыхления Pi имеет максимальное значение и определяется тяговыми возможностями базовой машины с учетом динамического характера приложения нагрузки:
Px=Tнkтkд Н,(15)
где кт - коэффициент использования тягового усилия, принимается кт = 0,8; кд - коэффициент динамичности, кд= 2,0-3,0.
Вертикальная составляющая силы сопротивления рыхлению Pzv может быть определена из расчетной схемы (рис.2.) по формуле:
Pz=Px, tgνkдвH, где Px, - горизонтальная составляющая реакции грунта без учета коэффициента динамичности: v - угол наклона силы к поверхности рыхления, принимается = 20°; кдв - коэффициент динамичности в вертикальном направлении, клв = 1,4-1,8.
Расчетная схема при выглублении зуба показана на рис.3 . Вертикальная составляющая реакции грунта Pz, при выглублении определяется из условия опрокидывании относительно, точки А:
Pz,=|Gм,d1|/d2 H, (17)
где Gм, - масса машины с учетом бульдозерного оборудования, Н; d1 - расстояние от центра тяжести рыхлителя до оси задней звездочки, м, определяется с учетом смещения центра тяжести по линии опорной поверхности:
d1 =0,5Lоп±X1 м, (18)
Расчетное
положение при выглублений рабочего
органа
Во время рыхления грунта имеет место возникновение боковой составляющей сил сопротивления рыхлению Ру, которая определяется по формуле:
Ру=0,4Рхкд Н. Для выбора гидроцилиндров необходимо найти максимальное значение усилия S на штоке гидроцилиндра. Расчетное положение представлено на рис.4 . В этом положении предусматривается начало заглубления зубьев в грунт, когда усилие S настолько велико, что возможно вывешивание машины относительно точки В. Машина находится в статическом состоянии. Сила S определяется из уравнения равновесия:
ΣM0=Sr-Pzmaxd``2+G`pl``p=0
Откуда Sr=|Pzmaxd``2+G`pl``p|/r H.
И ΣMв=Gb`lo-Pzmax(Lоп+d``2+m)=0,
Откуда Pzmax =|Gb`lo| /(Lоп+d``2+m) H,
где lo =0,5 Lоп ±Xl м.
Значения d``2, l``p, r, m принимаются по параметрам прототипов навесок и базовых машин и из эскизной компоновки рыхлителя, которая производится параллельно с расчетом сил, действующих на машину.
Расчетное положение при заглублении рабочего органа В зависимости от компоновочной схемы рыхлительнои навески число гидроцилиндров, работающих на заглубление - выглубление зубьев, от одного до двух. Вследствие этого, в случае применения двух гидроцилиндров значение силы S` действующей на один гидроцилиндр, будет равно S/2.
