- •1 Земляные сооружения и технологические схемы работ
- •2.Классификация машин для земляных работ по назначению
- •3. Предельная несущая способность грунта
- •4. Сопротивление грунтов сдвигу.
- •5. Физико-механические свойства грунтов
- •6. Основные схемы резания грунтов.
- •7. Основные теории для расчета сил резания и копания грунтов.
- •8. Расчет сил резанья по теории Ветрова.
- •9.Рачет сил резания элементарным профилем (теория Зелинина)
- •10. Учет дополнительных сопротивлений при резании грунтов ножом с площадкой износа .
- •11.Влияние скорости на сопротивление резанию
- •12. Закономерности резания двумя параллельными профилями .
- •26. Общие сведения о машинах для земляных работ. Классификация мзр, системы управления.
- •27.Выбор силового оборудования мзр. Режимы работы.
- •28. Шагающее оборудование машин для земляных работ.
- •30.Виды рабочего оборудования экскаватора и их схемы.
- •37. Экскаваторы планировщики. Схемы. Параметры.
- •38.Многоковшые экскаваторы. Классификация.
- •39. Многоковшовые экскаваторы продольного действия.
- •40. Многоковшовые роторные траншейные экскаваторы. Схемы.
- •41. Многоковшовый цепной экскаватор поперечного действия. Схемы.
- •42. Роторные поворотные экскаваторы. Схемы. Параметры.
- •43. Одноковшовые погрузчики. Схемы. Параметры.
- •44 Классификация скреперов, технология работ. Схемы
- •45 Конструктивные схемы и параметры скреперов.
- •46 Классификация бульдозеров и технологические схемы работ.
- •47. Конструктивные схемы бульдозеров. Основные параметры.
- •48.Конструктивная схема автогрейдера. Основные параметры.
- •19.Сопротивление качению ведомого и ведущего колеса.
- •(Из конспекта)
- •20.Сопротивление резанию при постоянном сечении стружки.
- •21.Определение категории грунта по сложности разработки. Схема ударника ДорНии.
- •22. Удельное сопротивление грунтов резанию.
- •23.Определение обьёма призмы волочения для бульдозерного отвала.
- •24.Закономерности уплотнения грунтов, компрессионная кривая, влияния влажности.
- •55.Расчёт рабочего оборудования одноковшового экскаватора.
- •57 .Выбор рабочих скоростей экскаваторов поперечного копания
- •58.Определение мощности привода цепи траншейного экскаватора
- •59. Соотношение скоростей роторного траншейного экскаватора и ротора.
- •60.Расчет одноковшовых погрузчиков
- •67.Производительность одноковшового экскаватора.
- •68.Определить производительность бульдозера при планировачных работах
- •69.Определение производительность скреперов:
- •70.Тяговое усилие по сцеплению
- •71.Определение объема призмы волочения для бульдозера:
- •13.Расчёт сил резания периметром
- •15.Расчет сил сопротивления копания ковшом скрепера
- •16. Схема сил при копании отвалом грейдера
- •17. Рекомендации по созданию рабочих органов. Геометрия ножа.
- •18.Сопротивление движению гусеничной машины
- •49. Автогрейдеры. Классификация, схема работ.
- •50. Грейдер-элеваторы. Схемы рабочих органов. Ходовая система. Конвейры.
- •51. Рыхлители, классификация, устройство, схемы работ.
- •52. Машины для уплотнения грунтов. Конструетивные схемы. Параметры.
- •53. Статический расчет одноковшового экскаватора.
- •54. Землесосные установки. Схема работы и передвижения. Выбор диаметра трубопровода.
- •61 Тяговый расчет скрепера
- •62 Тяговый расчет бульдозера.
- •63 64 Общая схема сил, действующих на автогрейдер.
- •Скорость перемещения грунтовой призмы вдоль отвала
- •Подставляя в это выражение значения l1, определяемое из косоугольного треугольника abd, получим
- •66 Расчетная схема рыхлителя и определения усилий копания
- •Земляные сооружения и технологические схемы работ.
- •79. Расчет устойчивости бульдозера.
- •32. Механизмы поворота одноковшового экскаватора.
- •31. Схема исполнительных механизмов экскаваторов с канатным приводом.
- •34. Конструкционные схемы гидравлических экскаваторов.
- •80. Определение суммарного усилия копания для отвалов бульдозера
- •36. Основные параметры и техническая характеристика.
47. Конструктивные схемы бульдозеров. Основные параметры.
Бульдозеры представляют собой самоходные землеройно-транспортные машины, предназначенные, в основном, для срезания, планировки и перемещения грунтов и материалов на расстояние до 150м (60-80 м гусеничные бульдозеры, 80-150 м колесные бульдозеры). В настоящее время на земляных работах бульдозеры выполняют 30...40 % общего объема всех работ.
п
о
типу конструкции :
с неповоротным в плане отвалом ,
постоянно
расположенным перпендикулярно продольной
оси базовой машины, и с поворотным
отвалом который может устанавливаться
перпендикулярно или под углом 53° в обе
стороны к продольной оси машины.
К основным параметрам бульдозерного
оборудования относятся (рис. 5)
высота
без козырька Н
и
длина В
отвала
(м), радиус кривизны отвала r,
основной
угол резания δ,
задний угол отвала α, угол заострения
ножей β
угол перекоса отвала ε
и угол поворота (у поворотных машин)
отвала в плане γ
(град),
высота подъема отвал h1
над опорной поверхностью h2
и глубин опускания отвала ниже опорной
поверхности (м), напорное Т
и
вертикальное Р
усилия
на режущей кромке (кН), скорости подъема
vп
и
опускания
отвала
vо.
48.Конструктивная схема автогрейдера. Основные параметры.
Автогрейдер - универсальная землеройно-транспортная машина, обеспечивающая полный цикл земляных работ при строительстве дорог, предназначена для послойного срезания и бокового перемещения грунта на расстоянии до 10 м. Автогрейдер может применяться для перемещения и разравнивания грунта и дорожно-строительных материалов, профилирован откосов при возведении насыпей и отрывке выемок, устройства корыта и боковых канав, смешивания грунта с добавками и вяжущими материалами на полотне дороги, очистки дорог от снега и льда и других работ.
К
основным параметрам и размерам относятся
: масса автогрейдера, удельный показатель
мощности, высота и длина отвала, скорость
движения автогрейдера, дорожный просвет,
угол резания ножа отвала, боковой вынос
и заглубление отвала, колесная схема.
Масса автогрейдера является главным параметром, которым определяется тип машины. Масса легкого автогрейдера 9 т, среднего 13 т и тяжелого 19 т.
Скорости движения автогрейдера должны быть не более 4 км/ч для рабочего режима и не менее 30 км/ч для транспортного режима.
19.Сопротивление качению ведомого и ведущего колеса.
(Из нета)
Сопротивление качению - сопротивление движению транспортного средства, вызванное качением колес.
Коэффициент сопротивления качению существенно влияет на потери энергии при движении автомобиля. Он зависит от многих конструктивных и эксплуатационных факторов и определяется экспериментально. Его средние значения для различных дорог при нормальном давлении воздуха в шине составляют 0,01 …0,1. Рассмотрим влияние различных факторов на коэффициент сопротивления качению.
Скорость движения. При изменении скорости движения в интервале 0…50 км/ч коэффициент сопротивления качению изменяется незначительно и его можно считать постоянным в указанном диапазоне скоростей. При повышении скорости движения за пределами указанного интервала коэффициент сопротивления качению существенно увеличивается вследствие возрастания потерь энергии в шине на трение. Коэффициент сопротивления качению в зависимости от скорости движения можно приближенно рассчитать по формуле f = (115 + v) \ 10 000 где v — скорость автомобиля, км/ч. Тип и состояние покрытия дороги. На дорогах с твердым покрытием сопротивление качению обусловлено главным образом деформациями шины. При увеличении числа дорожных неровностей коэффициент сопротивления качению возрастает. На деформируемых дорогах коэффициент сопротивления качению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образующейся колеи и состояния грунта. Значения коэффициента сопротивления качению при рекомендуемых уровнях давления воздуха и нагрузки на шину и средней скорости движения на различных дорогах приведены ниже:
Асфальто- и цементобетонное шоссе:
в хорошем состоянии…………………………… 0,007…0,015
в удовлетворительном состоянии………….. 0,015…0,02
Гравийная дорога в хорошем состоянии….. 0,02…0,025
Булыжная дорога в хорошем состоянии…… 0,025…0,03
Грунтовая дорога сухая, укатанная………….. 0,025…0,03
Песок……………………………………………………… 0,1…0,3
Обледенелая дорога, лед…………………………. 0,015…0,03
Укатанная снежная дорога………………………. 0,03…0,05
Тип шины. Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины. Изношенность протектора, уменьшение числа слоев корда и улучшение качества материала приводят к падению коэффициента сопротивления качению вследствие снижения потерь энергии в шине.
Давление воздуха в шине. На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопротивления качению повышается. На деформируемых дорогах при снижении давления воздуха в шине уменьшается глубина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивления качению имеет минимальное значение. Нагрузка на колесо. При увеличении вертикальной нагрузки на колесо коэффициент сопротивления качению существенно возрастает на деформируемых дорогах и незначительно — на дорогах с твердым покрытием.
Момент, передаваемый через колесо. При передаче момента через колесо коэффициент сопротивления качению возрастает вследствие потерь на проскальзывание шины в месте ее контакта с дорогой. Для ведущих колес значение коэффициента сопротивления качению на 10… 15 % больше, чем для ведомых. Коэффициент сопротивления качению оказывает существенное влияние на расход топлива и, следовательно, на топливную экономичность автомобиля. Исследования показали, что даже небольшое уменьшение этого коэффициента обеспечивает ощутимую экономию топлива. Поэтому неслучайно стремление конструкторов и исследователей создать такие шины, при использовании которых коэффициент сопротивления качению будет незначительным, но это весьма сложная проблема.
