Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пробные варианты ГВЭ 2016 весна.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.19 Mб
Скачать

7 ) На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1 см 1 см изоб­ра­жен тре­уголь­ник (см. Ри­су­нок). Най­ди­те его пло­щадь в квад­рат­ных сан­ти­мет­рах.

8 ) Най­ди­те ост­рый угол между бис­сек­три­са­ми ост­рых углов пря­мо­уголь­но­го тре­уголь­ни­ка. Ответ дайте в гра­ду­сах.

9)

10) Из двух городов, расстояние между которыми равно 560 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 65 км/ч и 75 км/ч?

11)

12) В  пра­виль­ной  тре­уголь­ной  пи­ра­ми­де SABC с  вер­ши­ной S сто­ро­на  ос­но­ва­ния равна  .  Через  пря­мую  AB  про­ве­де­но  се­че­ние пер­пен­ди­ку­ляр­ное ребру SC, пло­щадь ко­то­ро­го равна 18. Найти длину бо­ко­во­го ребра пи­ра­ми­ды.

Вариант 13

1) Бегун про­бе­жал 50 м за 5 се­кунд. Най­ди­те сред­нюю ско­рость бе­гу­на на ди­стан­ции. Ответ дайте в ки­ло­мет­рах в час.

2) Тет­радь стоит 40 руб­лей. Какое наи­боль­шее число таких тет­ра­дей можно будет ку­пить на 750 руб­лей после по­ни­же­ния цены на 10%?

3) Найдите корень уравнения:

4) В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно один раз.

5) На рисунке жирными точками показана цена олова на момент закрытия биржевых торгов во все рабочие дни с 3 по 18 сентября 2007 года. По горизонтали указываются числа месяца, по вертикали — цена тонны олова в долларах США. Для наглядности жирные точки на рисунке соединены линиями. Определите по рисунку наименьшую цену олова на момент закрытия торгов в указанный период (в долларах США за тонну).

6)

7) На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1 см 1 см изоб­ра­жен тре­уголь­ник (см. Ри­су­нок). Най­ди­те его пло­щадь в квад­рат­ных сан­ти­мет­рах.

8 ) Най­ди­те ме­ди­а­ну тре­уголь­ни­ка  , про­ве­ден­ную из вер­ши­ны  , если сто­ро­ны квад­рат­ных кле­ток равны 1.

9)

10) Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 15 часов. Через 3 часа после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?

11)

12) В пра­виль­ной тре­уголь­ной пи­ра­ми­де от­но­ше­ние бо­ко­во­го ребра к вы­со­те пи­ра­ми­ды равно 2. Най­ди­те от­но­ше­ние ра­ди­у­са впи­сан­но­го в пи­ра­ми­ду шара к сто­ро­не ос­но­ва­ния пи­ра­ми­ды.

Вариант 14

1) 1 ки­ло­ватт-час элек­тро­энер­гии стоит 1 рубль 80 ко­пе­ек. Счет­чик элек­тро­энер­гии 1 но­яб­ря по­ка­зы­вал 12 625 ки­ло­ватт-часов, а 1 де­каб­ря по­ка­зы­вал 12 802 ки­ло­ватт-часа. Сколь­ко руб­лей нужно за­пла­тить за элек­тро­энер­гию за но­ябрь?

2) Толь­ко 94% из 27 500 вы­пуск­ни­ков го­ро­да пра­виль­но ре­ши­ли за­да­чу B1. Сколь­ко че­ло­век пра­виль­но ре­ши­ли за­да­чу В1?

3) Найдите корень уравнения:

4) На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся один во­прос из спис­ка эк­за­ме­на­ци­он­ных во­про­сов. Ве­ро­ят­ность того, что это во­прос на тему «Впи­сан­ная окруж­ность», равна 0,2. Ве­ро­ят­ность того, что это во­прос на тему «Па­рал­ле­ло­грамм», равна 0,15. Во­про­сов, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам, нет. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся во­прос по одной из этих двух тем.

5) На рисунке жирными точками показано суточное количество осадков, выпадавших в Томске с 8 по 24 января 2005 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какое наибольшее количество осадков выпадало в период с 13 по 20 января. Ответ дайте в миллиметрах.

6)

7 ) В тре­уголь­ни­ке   угол   равен  °, внеш­ний угол при вер­ши­не  равен  °. Най­ди­те угол  . Ответ дайте в гра­ду­сах.

8 ) Най­ди­те пло­щадь пря­мо­уголь­ни­ка ABCD, счи­тая сто­ро­ны квад­рат­ных кле­ток рав­ны­ми 1.

9) На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .

10) Даша и Маша про­па­лы­ва­ют гряд­ку за 12 минут, а одна Маша — за 20 минут. За сколь­ко минут про­па­лы­ва­ет гряд­ку одна Даша?

11)

12) Дан пря­мо­уголь­ный па­рал­ле­ле­пи­пед ABCDA1B1C1D1, в ос­но­ва­нии ко­то­ро­го лежит квад­рат со сто­ро­ной 1. На плос­ко­сти ос­но­ва­ния име­ет­ся квад­рат CDKM. В этот квад­рат впи­са­на окруж­ность, ко­то­рая яв­ля­ет­ся ос­но­ва­ни­ем ци­лин­дра с вы­со­той, рав­ной длине от­рез­ка AA1. Най­ди­те рас­сто­я­ние от се­ре­ди­ны ос­но­ва­ния ци­лин­дра до точки пе­ре­се­че­ния диа­го­на­лей па­рал­ле­ле­пи­пе­да, если рас­сто­я­ние между пря­мыми AC и B1D1 равно 2.