- •Содержание
- •1 Основная часть
- •1.1 Технология омеднения сварочной проволоки
- •1.1.1 Общая характеристика сталепроволочного-кордового цеха
- •1.1.2 Описание технологического процесса омеднения сварочной проволоки
- •1.1.3 Характеристика механизма
- •1.2 Кинематическая схема механизма
- •1.3 Требования предъявляемые к электроприводу
- •1.4 Выбор системы электропривода
- •2 Расчет мощности и выбор двигателя
- •2.1 Расчет статических нагрузок. Предварительный выбор двигателя
- •Расчет будем производить согласно пособию по электроприводу моталок.
- •Произведем предварительный выбор двигателя. Приводной двигатель вращается с минимальной скоростью в режиме заправки, т.Е.:
- •2.2 Расчет и построение тахограммы и нагрузочной диаграммы
- •2.3 Проверка двигателя на перегрузочную способность
- •3 Расчет и выбор силовой части электропривода
- •3.1 Выбор и расчет преобразователя частоты
- •3.1.1 Блок – схема преобразователя частоты Siemens sinamics g120
- •3.1.2 Принципиальная электрическая схема
- •3.2 Защита электропривода
- •3.2.1 Расчет и выбор токоограничивающего реактора
- •3.2.2 Выбор и расчет сетевого дросселя
- •3.2.3 Расчет и выбор выходного фильтра
- •3.2.4 Защита автоматическими выключателями
- •3.2.5 Защита плавкими предохранителями
- •3.2.6 Выбор и расчет тормозного устройства
- •4 Выбор системы управления электропривода намоточного
- •4.1Выбор и разработка функциональной схемы сар электропривода
- •4.1.1 Функциональная схема системы управления ад
- •4.2 Структурная схема системы управления
- •4.2.1 Расчет параметров структурной схемы ад
- •4.3 Моделирование автоматизированного электропривода
- •4.4 Анализ динамических процессов
- •4.5 Параметрирование преобразователя частоты
4 Выбор системы управления электропривода намоточного
УСТРОЙСТВА
4.1Выбор и разработка функциональной схемы сар электропривода
Поскольку выбор способа и принципа управления определяется совокупностью статических, динамических, энергетических и затратных требований к асинхронному электроприводу, следует дать их сравнительную оценку.
Скалярный принцип частотного управления является наиболее распространенным в электроприводе. Ему свойственна техническая простота измерения и регулирования абсолютных значений переменных АД. Однако реализация желаемых законов регулирования скорости и момента АД, их стабилизация и ограничение, при которых обеспечивалось бы постоянство или ограничение в допустимых пределах внутренних переменных АД (токов статора и ротора, их потокосцеплений, основного магнитного потока), из-за сложных функциональных зависимостей между ними весьма ограничена. И если в статических режимах за счёт комбинаций обратных связей по переменным АД в замкнутых системах частотного регулирования и можно добиться желаемых или близких к ним свойств электропривода, то в динамических режимах эта задача трудно выполнима. Связано это с весьма сложными электромагнитными процессами, протекающими в АД.
Действительно, при любых динамических возмущениях в АД происходит взаимное изменение токов и связанных с ними магнитных потоков машины. При этом скорость изменения магнитных потоков заметно отстает от темпа изменения токов АД. В результате в переходном процессе нарушается взаимосвязь не только абсолютных значений токов и потоков, но и возникает фазовый сдвиг между их векторами. Последний носит свободный и не управляемый в динамике характер. Поскольку и абсолютные значения и взаимные фазовые сдвиги векторов токов и потоков цепей статора и ротора изменяются одновременно, то при наличии взаимосвязанных звеньев, содержащих электромагнитные постоянные времени цепей статора, контура намагничивания, ротора и механическую постоянную времени ротора, изменение переменных АД во времени будет носить затухающий колебательный характер. Период колебаний и коэффициент их демпфирования зависят от соотношений постоянных времени и абсолютного скольжения АД. После окончания переходного процесса абсолютные значения токов и потоков и фазовые сдвиги между их векторами взаимно сориентируются в пространстве и определятся уже в соответствии с заданным установившимся режимом работы АД.
Скалярное частотно-токовое управление АД характеризуется малым критическим скольжением и постоянством критического момента при постоянстве питающего АД тока и изменении его частоты. Однако в разомкнутых системах подобное управление практически исключено, поскольку с увеличением нагрузки (скольжения) резко падает магнитный поток АД и для обеспечения желаемых перегрузочных способностей АД по моменту потребуется заметное превышение номинальных значений напряжения питания и тока статора.
Векторный принцип управления базируется на принудительной взаимной ориентации векторов потокосцеплений и токов АД в полярной или декартовой системах координат в соответствии с заданным законом регулирования. В замкнутых системах векторного управления по цепям обратных связей наряду с абсолютными значениями регулируемых переменных поступает информация о текущем пространственном положении их векторов. За счёт регулирования модулей переменных и углов между их векторами обеспечивается полное управление АД как в статике, так и в динамике, обеспечивая тем самым заметное улучшение качества переходных процессов по сравнению со скалярным управлением. Именно этот факт и является определяющим при выборе систем с векторным управлением.
Информация о текущих значениях модуля и пространственного положения векторов переменных АД может быть получена как прямым их измерением с помощью соответствующих датчиков, так и косвенно на основе математической модели АД. Конфигурация и сложность такой модели определяются техническими требованиями к электроприводу. В общем случае подобные системы с косвенным регулированием координат электропривода из-за нестабильности параметров АД и сложной их взаимосвязи уступают по своим статическим и динамическим показателям системам с прямым векторным управлением. При сложности вычислительных операций и алгоритмов управления электроприводом достоинство систем с косвенным регулированием в простоте технических решений и, соответственно, в практической надежности.
При векторном управлении регулирование электромагнитного момента АД может осуществляться формированием мгновенных значений как напряжений, так и токов в обмотках статора. Вариант частотно-токового векторного управления является наиболее распространенным, поскольку при регулировании тока обеспечивается регулирование момента не зависимого от частоты питания АД, что упрощает схему управления, а также одновременно достаточно просто обеспечивается ограничение перегрева двигателя. При этом напряжения на обмотках статора АД, образуются автоматически в зависимости от его режима работы.
Система управления главного электропривода горизонтального перемещения ПШП строится по принципу косвенного регулирования скорости с векторным управлением. Только векторный принцип может удовлетворить жестким требованиям по обеспечению качественных переходных процессов.
В современных и наиболее совершенных частотно-регулируемых электроприводах, где системы программного управления реализованы на основе микропроцессорной техники, информация о векторах потокосцеплений электрической машины получается косвенным путем на основе ее математической модели.
Так, в преобразователях частоты серии SINAMICS G120 фирмы Siemens применяются системы управления скоростью АД с косвенной ориентацией по вектору потокосцепления его ротора. Модульный принцип построения их систем управления создает возможность комбинаций различных структур управления моментом и скоростью АД, включая как прямое (с помощью тахогенератора или энкодера), так и косвенное (по модели) определение реальной скорости двигателя. Выбор структур управления определяется технологическими требованиями к электроприводу и его эксплуатационными особенностями.
