Добавил:
course-as.ru Авшаров Евгений Михайлович, ejen@course-as.ru Инвестор и Технический директор ООО 'КУРС-АС1', Москва, http://www.course-as.ru, Все наиболее важное обо мне:http://www.course-as.ru/Avsharov.html Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

PS-2020a / part17

.pdf
Скачиваний:
29
Добавлен:
01.06.2020
Размер:
39.56 Mб
Скачать

DICOM PS3.17 2020a - Explanatory Information​

Page 521​

Positioner Type

(0018,1508)

= CARM

C-Arm Positioner Tabletop Relationship

(0018,9474)

= YES

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

Per-Frame Functional Groups Sequence

(5200,9230)

 

 

 

 

 

 

 

Frame 1

 

Item 1

 

 

 

>Table Position Sequence

(0018,9406)

 

 

 

 

 

 

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Top Vertical Position

(300A,0128)

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Top Longitudinal Position

(300A,0129)

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Top Lateral Position

(300A,012A)

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Horizontal Rotation Angle

(0018,9469)

 

 

 

 

 

 

= -10.0

 

 

 

 

>>Table Head Tilt Angle

(0018,9470)

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Cradle Tilt Angle

(0018,9471)

 

 

 

 

 

 

 

 

 

>Isocenter Reference System Sequence

(0018,9462)

 

 

 

 

 

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table X Position to Isocenter

(0018,9466)

 

 

 

 

 

 

= 500.0

 

 

 

 

>>Table Y Position to Isocenter

(0018,9467)

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Z Position to Isocenter

(0018,9468)

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Horizontal Rotation Angle

(0018,9469)

 

 

 

 

 

 

= -10.0

 

 

 

 

>>Table Head Tilt Angle

(0018,9470)

 

 

 

 

 

 

 

 

 

 

 

>>Table Cradle Tilt Angle

(0018,9471)

= 0.0

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

Frame “N”

 

Item “N”

 

 

 

>Table Position Sequence

(0018,9406)

 

 

 

 

 

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Top Vertical Position

(300A,0128)

 

 

 

 

 

 

 

 

 

 

 

>>Table Top Longitudinal Position

(300A,0129)

= 0.0

 

 

 

 

 

 

 

 

 

 

 

>>Table Top Lateral Position

(300A,012A)

= 1000.0

 

 

 

 

 

 

 

 

 

 

 

>>Table Horizontal Rotation Angle

(0018,9469)

= 0.0

 

 

 

 

 

 

 

 

 

 

 

>>Table Head Tilt Angle

(0018,9470)

= -10.0

 

 

 

 

>>Table Cradle Tilt Angle

(0018,9471)

= 0.0

 

 

 

 

 

 

 

 

 

>Isocenter Reference System Sequence

(0018,9462)

 

 

 

 

 

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table X Position to Isocenter

(0018,9466)

 

 

 

 

 

 

= 673.6

 

 

 

 

>>Table Y Position to Isocenter

(0018,9467)

 

 

 

 

 

 

 

 

 

 

 

>>Table Z Position to Isocenter

(0018,9468)

= 984.8

 

 

 

 

 

 

= 0.0

 

 

 

 

>>Table Horizontal Rotation Angle

(0018,9469)

 

 

 

 

 

 

 

 

 

 

 

>>Table Head Tilt Angle

(0018,9470)

= -10.0

 

 

 

 

 

 

 

 

 

 

 

>>Table Cradle Tilt Angle

(0018,9471)

= 0.0

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

Figure FFF.2.1-18. Attributes of the X-Ray Table Per Frame on Table Stepping​

FFF.2.1.4 Changes in X-Ray Controls​

FFF.2.1.4.1 Exposure Regulation Control​

This section provides information on the encoding of the "sensitive areas" used for regulation control of the X-Ray generation of an​ image that resulted from applying these X-Rays.​

FFF.2.1.4.1.1 User Scenario​

The user a) takes previous selected regulation settings or b) manually enters regulation settings or c) automatically gets computer-​ calculated regulation settings from requested procedures.​

Acquired images are networked or stored in offline media.​

Laterproblemsofimagequalityaredeterminedanduserwantstocheckforreasonsbyassessingthepositionsofthesensingregions.​

FFF.2.1.4.1.2 Encoding Outline​

TheEnhancedXAIODincludesamoduletosupplyinformationaboutactiveregulationcontrolsensingfields,theirshapeandposition​ relative to the pixel matrix.​

FFF.2.1.4.1.3 Encoding Details​

This section provides detailed recommendations of the key Attributes to address this particular scenario.​

- Standard -​

Page 522​ DICOM PS3.17 2020a - Explanatory Information​

Table FFF.2.1-38. Enhanced XA Image Functional Group Macros​

Functional Group Macro​

PS3.3 Reference​

Usage​

X-Ray Exposure Control Sensing Regions​C.8.19.6.3​

Specifiestheshapeandsizeofthesensingregionsinpixels,​

 

 

as well as their position relative to the top left pixel of the​

 

 

image.​

FFF.2.1.4.1.3.1 X-Ray Exposure Control Sensing Regions Macro Recommendations​

This macro is recommended to encode details about sensing regions.​

If the position of the sensing regions is fixed during the multi-frame acquisition, the usage of this macro is shared.​

If the position of the sensing regions was changed during the multi-frame acquisition, this macro is encoded per-frame to reflect the​ individual positions.​

Thesamenumberofregionsistypicallyusedforalltheframesoftheimage.Howeveritistechnicallypossibletoactivateordeactivate​ some of the regions during a given range of frames, in which case this macro is encoded per-frame.​

Table FFF.2.1-39. X-Ray Exposure Control Sensing Regions Macro Recommendations​

Attribute Name​

Tag​

Comment​

Exposure Control Sensing Regions Sequence​

(0018,9434)​

As many items as number of regions.​

FFF.2.1.4.1.4 Example​

 

 

In this section, two examples are given.​

The first example shows how three sensing regions are encoded: 1) central (circular), 2) left (rectangular) and 3) right (rectangular).​

1

200

274

511

750

824

1

250

1

3

2

511

774

Pixel Data Matrix

Figure FFF.2.1-19. Example of X-Ray Exposure Control Sensing Regions inside the Pixel Data matrix​

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 523​

The encoded values of the key Attributes of this example are shown in Figure FFF.2.1-20.​

...

 

 

 

 

 

 

Shared Functional Groups Sequence

(5200,9229)

 

 

 

 

 

 

 

All Frames

 

Item 1

 

 

 

...

 

 

 

Other functional groups

 

 

 

 

 

 

 

 

 

>Exposure Control Sensing Regions Sequence

(0018,9434)

 

 

 

 

 

 

 

Region 1

 

 

 

Item 1

 

 

 

 

 

 

 

= CIRCULAR

 

 

 

 

>>Exposure Control Sensing Region Shape

(0018,9435)

 

 

 

 

 

 

= 511\511

 

 

 

 

>>Center of Circular Exposure Control Sensing Region

(0018,9440)

 

 

 

 

 

 

= 100

 

 

 

 

>>Radius of Circular Exposure Control Sensing Region

(0018,9441)

 

 

 

 

 

 

Region 2

 

 

 

Item 2

 

 

 

 

 

 

 

= RECTANGULAR

 

 

 

 

>>Exposure Control Sensing Region Shape

(0018,9435)

 

 

 

 

 

 

 

 

 

 

 

>>Exposure Control Sensing Region Left Vertical Edge

(0018,9436)

= 200

 

 

 

 

 

 

 

 

 

 

 

>>Exposure Control Sensing Region Right Vertical Edge

(0018,9437)

= 274

 

 

 

 

 

 

 

 

 

 

 

>>Exposure Control Sensing Region Upper Horizontal Edge

(0018,9438)

= 250

 

 

 

 

>>Exposure Control Sensing Region Lower Horizontal Edge

(0018,9439)

= 774

 

 

 

Item 3

 

Region 3

 

 

 

 

>>Exposure Control Sensing Region Shape

(0018,9435)

= RECTANGULAR

 

 

 

 

>>Exposure Control Sensing Region Left Vertical Edge

(0018,9436)

= 750

 

 

 

 

>>Exposure Control Sensing Region Right Vertical Edge

(0018,9437)

= 824

 

 

 

 

>>Exposure Control Sensing Region Upper Horizontal Edge

(0018,9438)

= 250

 

 

 

 

>>Exposure Control Sensing Region Lower Horizontal Edge

(0018,9439)

= 774

 

 

...

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FFF.2.1-20. Attributes of the First Example of the X-Ray Exposure Control Sensing Regions​

The second example shows the same regions, but the field of view region encoded in the Pixel Data matrix has been shifted of 240​ pixels right and 310 pixels down, thus the left rectangular sensing region is outside the Pixel Data matrix as well as both rectangular​ regions overlap the top row of the image matrix.​

- Standard -​

Page 524​

DICOM PS3.17 2020a - Explanatory Information​

-40 34

271

510 584

-60

 

 

 

 

 

 

1

 

 

3

 

2

201

464

Pixel Data Matrix

Figure FFF.2.1-21. Example of X-Ray Exposure Control Sensing Regions partially outside the Pixel Data​

matrix​

The encoded values of the key Attributes of this example are shown in Figure FFF.2.1-22.​

...

 

 

 

 

 

 

 

 

 

 

 

 

 

Shared Functional Groups Sequence

(5200,9229)

 

 

 

 

 

 

 

All Frames

 

Item 1

 

 

 

...

 

 

 

Other functional groups

 

 

 

 

 

 

 

 

 

>Exposure Control Sensing Regions Sequence

(0018,9434)

 

 

 

 

 

 

 

Region 1

 

 

 

Item 1

 

 

 

 

 

 

 

= CIRCULAR

 

 

 

 

>>Exposure Control Sensing Region Shape

(0018,9435)

 

 

 

 

 

 

= 201\271

 

 

 

 

>>Center of Circular Exposure Control Sensing Region

(0018,9440)

 

 

 

 

 

 

= 100

 

 

 

 

>>Radius of Circular Exposure Control Sensing Region

(0018,9441)

 

 

 

 

 

 

Region 2

 

 

 

Item 2

 

 

 

 

 

 

 

= RECTANGULAR

 

 

 

 

>>Exposure Control Sensing Region Shape

(0018,9435)

 

 

 

 

 

 

 

 

 

 

 

>>Exposure Control Sensing Region Left Vertical Edge

(0018,9436)

= -40

 

 

 

 

 

 

 

 

 

 

 

>>Exposure Control Sensing Region Right Vertical Edge

(0018,9437)

= 34

 

 

 

 

>>Exposure Control Sensing Region Upper Horizontal Edge

(0018,9438)

= -60

 

 

 

 

 

 

 

 

 

 

 

>>Exposure Control Sensing Region Lower Horizontal Edge

(0018,9439)

= 464

 

 

 

 

 

 

 

 

 

 

Item 3

 

Region 3

 

 

 

 

>>Exposure Control Sensing Region Shape

(0018,9435)

= RECTANGULAR

 

 

 

 

>>Exposure Control Sensing Region Left Vertical Edge

(0018,9436)

= 510

 

 

 

 

>>Exposure Control Sensing Region Right Vertical Edge

(0018,9437)

= 584

 

 

 

 

>>Exposure Control Sensing Region Upper Horizontal Edge

(0018,9438)

= -60

 

 

 

 

>>Exposure Control Sensing Region Lower Horizontal Edge

(0018,9439)

= 464

 

 

...

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FFF.2.1-22. Attributes of the Second Example of the X-Ray Exposure Control Sensing Regions​

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 525​

FFF.2.1.5 Image Detector and Field of View​

ThissectionprovidesinformationontheencodingoftheimagedetectorparametersandfieldofviewappliedduringtheX-Rayacquis-​ ition.​

FFF.2.1.5.1 User Scenario​

The user selects a given size of the field of view before starting the acquisition. This size can be smaller than the size of the Image​ Detector.​

The position of the field of view in the detector area changes during the acquisition in order to focus on an object of interest.​

Acquired image is networked or stored in offline media, then the image is:​

•​Displayed and reviewed in cine mode, and the field of view area needs to be displayed on the viewing screen;​

•​Used for quality assurance, to relate the pixels of the stored image to the detector elements, for instance to understand the image​ artifacts due to detector defects;​

•​Used to measure the dimension of organs or other objects of interest;​

•​Used to determine the position in the 3D space of the projection of the objects of interest.​

FFF.2.1.5.2 Encoding Outline​

The XA SOP Class does not encode some information to fully characterize the geometry of the conic projection acquisition, such as​ the position of the Positioner Isocenter on the FOV area. Indeed, the XA SOP Class assumes that the isocenter is projected in the​ middle of the FOV.​

TheEnhancedXASOPClassencodesthepositionoftheIsocenteronthedetector,aswellasspecificFOVAttributes(origin,rotation,​ flip) per-frame or shared. It encodes some existing Attributes from DX to specify information of the Digital Detector and FOV. It also​ allowsdifferentiatingtheimageintensifiervs.thedigitaldetectorandthendefinesconditionsonAttributesdependingonimageintens-​ ifier or digital detector.​

FFF.2.1.5.3 Encoding Details​

This section provides detailed recommendations of the key Attributes to address this particular scenario.​

Table FFF.2.1-40. Enhanced X-Ray Angiographic Image IOD Modules​

IE​

Module​

PS3.3 Reference​

Usage​

Image​

XA/XRF Acquisition​

C.8.19.3​

Specifies the type of detector.​

 

X-Ray Image Intensifier​

C.8.19.4​

Conditional to type of detector. Applicable in case of​

 

 

 

IMG_INTENSIFIER.​

 

X-Ray Detector​

C.8.19.5​

Conditional to type of detector. Applicable in case of​

 

 

 

DIGITAL_DETECTOR.​

Table FFF.2.1-41. Enhanced XA Image Functional Group Macros​

Functional Group Macro​

PS3.3 Reference​

Usage​

X-Ray Field of View​

C.8.19.6.2​

Specifies the field of view.​

XA/XRF Frame Pixel Data Properties​

C.8.19.6.4​

Specifies the Imager Pixel Spacing.​

FFF.2.1.5.3.1 XA/XRF Acquisition Module Recommendations​

The usage of this module is recommended to specify the type and details of the receptor.​

- Standard -​

Page 526​ DICOM PS3.17 2020a - Explanatory Information​

Table FFF.2.1-42. XA/XRF Acquisition Module Recommendations​

Attribute Name​

Tag​

Comment​

X-Ray Receptor Type​

(0018,9420)​

Two values are applicable to this scenario:​

 

 

IMG_INTENSIFIER​

 

 

or​

 

 

DIGITAL_DETECTOR​

Distance Receptor Plane to Detector​

(0018,9426)​

Applicable to this scenario, regardless the type of receptor.​

Housing​

 

 

Distance Receptor Plane to Detector Housing (0018,9426) is a positive value except in the case of an image intensifier where the​ receptor plane is a virtual plane located outside the detector housing, which depends on the magnification factor of the intensifier.​

The Distance Receptor Plane to Detector Housing (0018,9426) may be used to calculate the pixel size of the plane in the patient​ when markers are placed on the detector housing.​

FFF.2.1.5.3.2 X-Ray Image Intensifier Module Recommendations​

When the X-Ray Receptor Type (0018,9420) equals "IMG_INTENSIFIER" this module specifies the type and characteristics of the​ image intensifier.​

RECEPTOR PLANE

INPUT PHOSPHOR SCREEN

DETECTOR HOUSING

OUTPUT PHOSPHOR SCREEN

X-RAY TUBE

 

ACTIVE

X-RAY BEAM

DIMENSION

INTENSIFIER

SIZE

Figure FFF.2.1-23. Schema of the Image Intensifier​

The Intensifier Size (0018,1162) is defined as the physical diameter of the maximum active area of the image intensifier. The active​ area is the region of the input phosphor screen that is projected on the output phosphor screen. The image intensifier device may be​ configured for several predefined active areas to allow different levels of magnification.​

The active area is described by the Intensifier Active Shape (0018,9427) and the Intensifier Active Dimension(s) (0018,9428).​

The field of view area is a region equal to or smaller than the active area, and is defined as the region that is effectively irradiated by​ the X-Ray beam when there is no collimation. The stored image is the image resulting from digitizing the field of view area.​

There is no Attribute that relates the FOV origin to the intensifier. It is commonly assumed that the FOV area is centered in the intens-​ ifier.​

The position of the projection of the isocenter on the active area is undefined. It is commonly understood that the X-Ray positioner is​ calibrated so that the isocenter is projected in the approximate center of the active area, and the field of view area is centered in the​ active area.​

- Standard -​

DICOM PS3.17 2020a - Explanatory Information​

Page 527​

FFF.2.1.5.3.3 X-Ray Detector Module Recommendations​

When the X-Ray Receptor Type (0018,9420) equals "DIGITAL_DETECTOR" this module specifies the type and characteristics of the​ image detector.​

The size and pixel spacing of the digital image generated at the output of the digital detector are not necessarily equal to the size and​ element spacing of the detector matrix. The detector binning is defined as the ratio between the pixel spacing of the detector matrix​ and the pixel spacing of the digital image.​

If the detector binning is higher than 1.0 several elements of the detector matrix contribute to the generation of one single digital pixel.​

The digital image may be processed, cropped and resized in order to generate the stored image. The schema below shows these​ two steps of the modification of the pixel spacing between the detector physical elements and the stored image:​

Detector

 

Detector Reading

Digital

 

Field of View Extraction

 

Stored

Matrix

and Binning

Image

and Resizing

 

Image

Figure FFF.2.1-24. Generation of the Stored Image from the Detector Matrix​

Table FFF.2.1-43. X-Ray Detector Module Recommendations​

Attribute Name​

Tag​

Comment​

Detector Binning​

(0018,701A)​

The ratio between the pixel spacing of the detector matrix and the pixel​

 

 

spacingofthedigitalimage.Itdoesnotdescribeanyfurtherpost-processing​

 

 

to resize the pixels to generate the stored image.​

Detector Element Spacing​

(0018,7022)​

Pixel spacing of the detector matrix.​

Position of Isocenter Projection​

(0018,9430)​

Relates the position of the detector elements to the isocenter reference​

 

 

system.Itisindependentfromthedetectorbinningandfromthefieldofview​

 

 

origin.​

This Attribute is defined if the Isocenter Reference System Sequence​ (0018,9462) is present.​

FFF.2.1.5.3.4 X-Ray Field of View Macro Recommendations​

The usage of this macro is recommended to specify the characteristics of the field of view.​

When the field of view characteristics change across the Multi-frame Image, this macro is encoded on a per-frame basis.​

The field of view region is defined by a shape, origin and dimension. The region of irradiated pixels corresponds to the interior of the​ field of view region.​

When the X-Ray Receptor Type (0018,9420) equals "IMG_INTENSIFIER", the intensifier TLHC is undefined. Therefore the field of​ view origin cannot be related to the physical area of the receptor. It is commonly understood that the field of view area corresponds​ to the intensifier active area, but there is no definition in the DICOM Standard that forces a manufacturer to do so. As a consequence,​ it is impossible to relate the position of the pixels of the stored area to the isocenter reference system.​

Table FFF.2.1-44. X-Ray Field of View Macro Recommendations​

Attribute Name​

Tag​

Comment​

Field of View Sequence​

(0018,9432)​

 

>Field of View Shape​

(0018,1147)​

Applicable in this scenario.​

>Field of View Dimension(s) in Float​

(0018,9461)​

Applicable in this scenario.​

>Field of View Origin​

(0018,7030)​

Applicable only in the case of digital detector.​

>Field of View Rotation​

(0018,7032)​

Applicable regardless the type of receptor.​

>Field of View Horizontal Flip​

(0018,7034)​

Applicable regardless the type of receptor.​

- Standard -​

Page 528​

DICOM PS3.17 2020a - Explanatory Information​

Attribute Name​

Tag​

Comment​

>Field of View Description​

(0018,9433)​

Free text defining the type of field of view as displayed​

 

 

by the manufacturer on the acquisition system. For​

 

 

display purposes.​

FFF.2.1.5.3.5 XA/XRF Frame Pixel Data Properties Macro Recommendations​

The usage of this macro is recommended to specify the Imager Pixel Spacing.​

When the field of view characteristics change across the Multi-frame Image, this macro is encoded on a per-frame basis.​

Table FFF.2.1-45. XA/XRF Frame Pixel Data Properties Macro Recommendations​

Attribute Name​

Tag​

Comment​

Frame Pixel Data Properties Sequence​

(0028,9443)​

 

>Imager Pixel Spacing​

(0018,1164)​

Applicable regardless the type of receptor.​

In case of image intensifier, the Imager Pixel Spacing (0018,1164) may be non-uniform due to the pincushion distortion, and this At-​ tribute corresponds to a manufacturer-defined value (e.g., average, or value at the center of the image).​

FFF.2.1.5.4 Examples​

FFF.2.1.5.4.1 Field of View On Image Intensifier​

This example illustrates the encoding of the dimensions of the intensifier device, the intensifier active area and the field of view in​ case of image intensifier.​

In this example, the diameter of the maximum active area is 410 mm. The image acquisition is performed with an electron lens that​ focusesthephotoelectronbeaminsidetheintensifiersothatanactiveareaof310mmofdiameterisprojectedontheoutputphosphor​ screen.​

The X-Ray beam is projected on an area of the input phosphor screen of 300 mm of diameter, and the corresponding area on the​ output phosphor screen is digitized on a matrix of 1024 x1024 pixels. This results on a pixel spacing of the digitized matrix of 0.3413​ mm.​

The distance from the Receptor Plane to the Detector Housing in the direction from the intensifier to the X-Ray tube is 40 mm.​

The encoded values of the key Attributes of this example are shown in Figure FFF.2.1-25.​

- Standard -​

 

 

 

DICOM PS3.17 2020a - Explanatory Information​

Page 529​

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

= 1024

 

Rows

(0028,0010)

 

 

 

= 1024

 

Columns

(0028,0011)

 

 

 

= IMG_INTENSIFIER

 

X-Ray Receptor Type

(0018,9420)

 

 

 

 

 

Distance Receptor Plane to Detector Housing

(0018,9426)

= 40.0

 

 

 

 

 

Intensifier Size

(0018,1162)

= 0 410.0

 

 

 

 

 

Intensifier Active Shape

(0018,9427)

= ROUND

 

 

 

 

 

Intensifier Active Dimension(s)

(0018,9428)

= 310

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shared Functional Groups Sequence

(5200,9229)

 

 

 

Item 1

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>Field of View Sequence

(0018,9432)

 

 

 

 

 

 

 

 

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>>Field of View Shape

(0018,1147)

= CIRCULAR

 

 

 

 

 

>>Field of View Dimensions in Float

(0018,9461)

= 300.0

 

 

 

 

 

 

 

 

 

 

 

 

 

>>Field of View Rotation

(0018,7032)

= 0

 

 

 

 

 

>>Field of View Horizontal Flip

(0018,7034)

= 0

 

 

 

 

 

 

 

= NO

 

 

 

>Frame Pixel Data Properties Sequence

(0028,9443)

 

 

 

 

 

 

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

 

= 0.3413\0.3413

 

 

 

 

 

>>Imager Pixel Spacing

(0018,1164)

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FFF.2.1-25. Attributes of the Example of Field of View on Image Intensifier​

FFF.2.1.5.4.2 Field of View On Digital Detector​

The following examples show three different ways to create the stored image from the same detector matrix.​

In the figures below:​

•​The blue dotted-line squares represent the physical detector pixels;​

•​The blue square represents the TLHC pixel of the physical detector area;​

•​The purple square represents the physical detector pixel in whose center the Isocenter is projected;​

•​The dark green square represents the TLHC pixel of the region of the physical detector that is exposed to X-Ray when there is​ no collimation inside the field of view;​

•​The light green square represents the TLHC pixel of the stored image;​

•​The thick black straight line square represents the stored image, which is assumed to be the field of view area. The small thin​ black straight line squares represent the pixels of the stored image;​

•​The blue dotted-line arrow represents Field Of View Origin (0018,7030);​

•​The purple arrow represents the position of the Isocenter Projection (0018,9430).​

Note that the detector active dimension is not necessarily the FOV dimension.​

In all the examples,​

•​The physical detector area is a matrix of 10x10 square detector elements, the TLHC element being the element (1,1);​

•​The detector elements irradiated during this acquisition (defining the field of view) are in a matrix of 8x8 whose TLHC element is​ the element (3,3) of the physical detector area.​

In the first example, there is neither binning nor resizing between the detector matrix and the stored image.​

The encoded values of the key Attributes of this example are shown in Figure FFF.2.1-26.​

- Standard -​

Page 530​

 

 

 

DICOM PS3.17 2020a - Explanatory Information​

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 8

 

Rows

(0028,0010)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 8

 

Columns

(0028,0011)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= DIGITAL_DETECTOR

 

X-Ray Receptor Type

(0018,9420)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detector Binning

(0018,701A)

= 1.0\1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detector Element Spacing

(0018,7022)

= 0.2\0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Position of Isocenter Projection

(0018,9430)

= 5\7

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Per-Frame Functional Groups Sequence

(5200,9230)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item i

 

 

 

 

 

 

 

>Field of View Sequence

(0018,9432)

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>>Field of View Shape

(0018,1147)

= RECTANGLE

 

 

 

 

 

>>Field of View Dimensions in Float

(0018,9461)

= 1.6\1.6

 

 

 

 

 

>>Field of View Origin

(0018,7030)

= 2.0\2.0

 

 

 

 

 

>>Field of View Rotation

(0018,7032)

= 0

 

 

 

 

 

>>Field of View Horizontal Flip

(0018,7034)

= NO

 

 

 

>Frame Pixel Data Properties Sequence

(0028,9443)

 

 

 

 

 

Item 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>>Imager Pixel Spacing

(0018,1164)

= 0.2\0.2

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure FFF.2.1-26. Attributes of the First Example of Field of View on Digital Detector​

In the second example, there is a binning factor of 2 between the detector matrix and the digital image. There is no resizing between​ the digital image (binned) and the stored image.​

The encoded values of the key Attributes of this example are shown in Figure FFF.2.1-27.​

- Standard -​

Соседние файлы в папке PS-2020a