- •1 Компьютерные сети: определение
- •2 Главные сетевые услуги
- •3 Обобщенная структура компьютерной сети
- •4 Классификация компьютерных сетей
- •5 Требования, предъявлемые к компьютерным сетям
- •6 Локальные сети: определение
- •7 Классификация локальных сетей
- •8 Сети с централизованным управлением: достоинства и недостатки
- •9 Одноранговые сети: достоинства и недостатки
- •10 Сети «Клиент - сервер»: достоинства и недостатки
- •11 Технология клиент-сервер. Виды серверов.
- •12 Локальные сети: базовые топологии
- •13 Физические топологии: сравнительные характеристики
- •14Физические среды передачи данных: классификация
- •15 Среда передачи. Классификация
- •16 Толстый коаксиальный кабель
- •17 Тонкий коаксиальный кабель
- •18 Витая пара: виды и категории
- •19 Оптоволоконный кабель: характеристики
- •20 Одномодовое, многомодовое оптоволокно
- •21 Беспроводная среда передачи.
- •22 Диапазоны электромагнитного спектра.
- •23 Радиодоступ: WiFi, WiMax и hsdpa
- •24 Радиорелейные линии связи
- •25 Спутниковые каналы передачи данных
- •26 Геостационарный спутник. Средне- и низкоорбитальные спутники.
- •27 Инфракрасное излучение
- •28 Системы мобильной связи. Структура. Классификация
- •29 Системы персонального радиовызова
- •30 Сотовые системы мобильной связи
- •31 Транкинговая связь
- •32 Методы доступа к среде передачи: классификация
- •33 Метод доступа к среде csma/cd. Этапы доступа к среде.
- •35 Метод доступа с маркером
- •36 Метод доступа по приоритету
- •37 Модель взаимодействия открытых систем osi.
- •38 Понятие протокола и интерфейс
- •39 Уровни эталонной модели и их функции
- •44 Типы процедур уровня логического управления каналом
- •45 Уровень управления доступом к среде передачи
- •46 Локальные сети Ethernet: характеристики
- •47 Форматы кадров Ethernet
- •48 Типы мас адресов
- •49 Ethernet 10Base-5: основные характеристики
- •50 Правило 5-4-3
- •51 Ethernet 10Base-2: основные характеристики
- •52 Ethernet 10Base-t: основные характеристики
- •53 Правило четырех хабов
- •54 Ethernet 10Base-f: основные характеристики
- •55 Fast Ethernet: время появления, виды технологий, основные характеристики
- •56 Gigabit Ethernet: время появления, виды технологий, основные характеристики
- •59 100Vg – AnyLan: история, время появления, основные характеристики. Преимущества и недостатки.
- •60 Ieee 802.4 (Arcnet): история, время появления, основные характеристики
- •61 Сеть Token Ring: принципы работы и основные характеристики
- •64 Методы передачи данных. Выделенные (или арендуемые - leased) каналы: достоинства и недостатки
- •65 Коммутация каналов: принцип работы, достоинства и недостатки
- •66 Коммутация с запоминанием. Достоинства и недостатки.
- •67 Коммутация пакетов: принцип работы. Достоинства и недостатки
- •68 Виртуальные каналы.
- •69 Глобальная сеть Интернет. История появления сети Интернет. Определение и принципы сети Интернет.
- •70 Виды услуг, предоставляемых в сети Интернет. Www. История появления. Основные понятия.
- •71 Протоколы электронной почты
- •72 Стек протоколов tcp/ip
- •73 Адресация в сети Интернет
- •74 Протокол tcp. Основные функции. Организация установления соединений
- •75 Протокол udp
- •76 Протокол ip. Основные функции. Формат заголовка. Версии протокола
- •77 Классы ip-адресов
- •78 Особые ip-адреса
- •79 Подсети: назначение
- •80 Маска ip-адреса
- •82 Формат ip-пакета
- •83 Протоколы arp, rarp: назначение
- •84 Протокол dhcp
- •86 Сетевые адаптеры
- •87 Передача кадра (этапы)
- •88 Прием кадра (этапы)
- •89 Повторитель (repeator)
- •90 Концентратор (hub)
- •91 Мост (bridge). Ограничения топологии сети, построенной на мостах
- •92 Коммутатор (switch, switching hub). Основных задачи коммутаторов
- •93 Протокол покрывающего дерева (Spanning Tree Protocol)
- •94 Маршрутизатор: назначение, классификация
- •95 Функции маршрутизатора
- •96 Маршрутизаторы против коммутаторов
- •97 Общая характеристика сетей атм. Основные компоненты. Трёхмерная модель протоколов сети атм
- •98 Формат ячейки атм
- •99 Сети пакетной коммутации X.25
- •100 Сети Frame Relay
- •101 Сети isdn
- •102 Методика расчета конфигурации сети Ethernet.
- •103 Методика расчета конфигурации сети Fast Ethernet
- •104 Теорема Найквиста-Котельникова
- •105 Модуляция при передаче аналоговых сигналов
- •106 Модуляция при передаче дискретных сигналов
- •107 Дискретизация аналоговых сигналов
- •108 Квантование
- •109 Методы кодирования
- •110 Потенциальный код nrz
- •111 Биполярное кодированиеAmi
- •112 Манчестерский код
- •113 Потенциальный код 2b1q
- •114 Потенциальный код 4b/5b
- •115 Преимущества цифрового сигнала перед аналоговым
- •116 Методы мультиплексирования
- •117 Коммутация каналов на основе метода fdm
- •118 Коммутация каналов на основе метода wdm
- •119 Коммутация каналов на основе метода tdm
- •120 Режимы использования среды передачи: дуплекс, симплекс, полудуплекс
- •121 Понятие икт
- •122 Обобщенная структура телекоммуникационной сети
- •123 Сеть доступа
- •124 Транспортная сеть
- •125 Сетевой интеллект
- •126 Сетевое управление: уровни
- •127 Cетевое управление: категории прикладных функций
- •128 Иерархия скоростей
- •129 Сети pdh. Плезиохронная цифровая иерархия.
- •130 Сети pdh. Методы мультиплексирования и синхронизация.
- •131 Ограничения технологии pdh
- •132 Сети sdh/sonet. Особенности технологии. Отличие от pdh.
- •133 Скорости передачи иерархии sdh. Структура кадра stm.
- •134 Состав сети sdh. Типовые топологии
- •135 Сети dwdm. Принцип работы
- •136 Сети otn. Иерархия скоростей. Структура кадра.
101 Сети isdn
Технология ISDN появилась в 1984 году. Цифровая сеть с интегрированными услугами (ISDN - Integrated Services Digital Network) - система, в которой по телефонным каналам передаются только цифровые сигналы, в том числе и по абонентским линиям, т.е. конечный абонент передает данные непосредственно в цифровой форме.
ISDN позволяет объединить передачу голоса, данных и изображения. Интеграция разнородных трафиков ISDN выполняется, используя способ временного разделения (TDM – Time Division Multiplexing). ISDN использует цифровые каналы в режиме коммутации каналов. Цифровые сети с интеграцией услуг ISDN можно использовать при передаче голоса и данных, для объединения удаленных ЛВС, для доступа к сети Internet и для различных видов трафика, в том числе мультимедийного. Оконечными устройствами в сети ISDN могут быть: цифровой телефонный аппарат, компьютер с ISDN-адаптером, видео- и аудиооборудование.
Суть технологии ISDN, состоит в том, что различные устройства, например, телефоны, компьютеры, факсы и другие устройства, могут одновременно передавать и принимать цифровые сигналы после установления коммутируемого соединения с удаленным абонентом.
Сети ISDN состоят из двух В-каналов, дополнительного D-канала и H-канала. В ISDN основной поток информации (голос и данные) передается по В-каналам. Эти каналы коммутируются между парой абонентов с помощью информации, передаваемой по дополнительному каналу – D-каналу. H-канал - это канал высокоскоростной передачи данных со скоростями 384 кбит/с (канал H0), 1563 кбит/с (канал H11), 1920 кбит/с (канал H12).
После коммутации каждый В-канал представляет собой две “трубы”, пропускающие во встречных направлениях потоки битов со скоростью 64 кбит/с. Служебный канал – также двунаправленный, его пропускная способность может быть 16 или 64 кбит/с в зависимости от типа сервиса.
Скорость передачи данных в ISDN может быть: 64 кбит/с., 128 кбит/с, а в широкополосных каналах связи до 155 Мбит/с. Через линии ISDN возможна передача данных с помощью технологий и протоколов глобальных сетей: Х.25, Frame Relay.
102 Методика расчета конфигурации сети Ethernet.
Для того, чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо, чтобы выполнялись три основных условия:
Количество станций в сети не превышает 1024 (с учетом ограничений для коаксиальных сегментов).
Удвоенная задержка распространения сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не превышает 575 битовых интервалов.
Сокращение межкадрового расстояния (Interpacket Gap Shrinkage) при прохождении последовательности кадров через все повторители не более, чем на 49 битовых интервалов (напомним, что при отправке кадров станция обеспечивает начальное межкадровое расстояние в 96 битовых интервалов).
Соблюдение этих требований обеспечивает корректность работы сети даже в случаях, когда нарушаются простые правила конфигурирования, определяющие максимальное количество повторителей и максимальную длину сегментов каждого типа.
Физический смысл ограничения задержки распространения сигнала: соблюдение этого требования обеспечивает своевременное обнаружение коллизий.
Требование на минимальное межкадровое расстояние связано с тем, что при прохождении кадра через повторитель это расстояние уменьшается. Каждый пакет, принимаемый повторителем, ресинхронизируется для исключения дрожания сигналов, накопленного при прохождении последовательности импульсов по кабелю и через интерфейсные схемы. Процесс ресинхронизации обычно увеличивает длину преамбулы, что уменьшает межкадровый интервал. При прохождении кадров через несколько повторителей межкадровый интервал может уменьшиться настолько, что сетевым адаптерам в последнем сегменте не хватит времени на обработку предыдущего кадра, в результате чего кадр будет просто потерян. Поэтому не допускается суммарное уменьшение межкадрового интервала более чем на 49 битовых интервалов. Величину уменьшения межкадрового расстояния при переходе между соседними сегментами обычно называют в англоязычной литературе Segment Variability Value, SVV, а суммарную величину уменьшения межкадрового интервала при прохождении всех повторителей - Path Variability Value, PVV. Очевидно, что величина PVV равна сумме SVV всех сегментов, кроме последнего.
