Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Обязательный минимум для экзамена Пм01.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
215.04 Кб
Скачать
  1. Понятие свариваемости металла. Классификация сталей по свариваемости

По свариваемости стали подразделяют на четыре группы: первая группа — хорошо сваривающиеся; вторая группа — удовлетворительно сваривающиеся; третья группа — ограниченно сваривающиеся; четвертая группа — плохо сваривающиеся.

Основные признаки, характеризующие свариваемость сталей, — склонность к образованию трещин и механические свойства сварного соединения.

К первой группе относятся стали, сварка которых может быть выполнена по обычной технологии, т. е. без подогрева до сварки и в процессе сварки, и без последующей термообработки. Однако применение термообработки для снятия внутренних напряжений не исключается.

Ко второй группе относят в основном стали, при сварке которых в нормальных производственных условиях трещин не образуется. В эту же группу входят стали, которые для предупреждения образования трещин нуждаются в предварительном нагреве, а также в предварительной и последующей термообработке.

К третьей группе относят стали, склонные в обычных условиях сварки к образованию трещин. При сварке их предварительно подвергают термообработке и подогревают. Кроме того, большинство сталей, входящих в эту группу, подвергают обработке после сварки.

К четвертой группе относят стали, наиболее трудно поддающиеся сварке и склонные к образованию трещин. Эти стали свариваются ограниченно, поэтому сварку их выполняют с обязательной предварительной термообработкой, с подогревом в процессе сварки и последующей термообработкой.

 

  1. Защитные газы (назначение, классификация, свойства)

Углекислый газ CO2 (углекислота, двуокись углерода, диоксид углерода, угольный ангидрид) в зависимости от давления и температуры может находиться в газообразном, жидком или твердом состоянии.

В газообразном состоянии диоксид углерода представляет собой бесцветный газ с немного кисловатым вкусом и запахом.

Жидкий диоксид углерода (углекислота) представляет собой бесцветную жидкость без запаха. При комнатной температуре она существует только при давлении свыше 5850 кПа. Плотность жидкой углекислоты сильно зависит от температуры. Например, при температуре ниже +11°С жидкая углекислота тяжелее воды, при температуре выше +11°С – легче. В результате испарения 1 кг жидкой углекислоты при нормальных условиях образуется примерно 509 л газа. Согласно ГОСТ 8050-85 газообразная и жидкая углекислота поставляется трех видов: высшего, первого и второго сортов. Для сварки рекомендуется использовать углекислоту высшего и первого сорта. Применение углекислоты второго сорта для сварки допускается, однако желательно наличие осушителей газа.

Гелий – инертный газ без цвета, запаха и вкуса, с атомной массой 4 и плотностью 0,178 г/л (при температуре +20°C). Гелий значительно легче воздуха. Температура его сжижения составляет -268,9°C.

Гелий получают методом фракционной конденсации из природных газов, образующихся при распаде ураносодержащих горных пород.

Газообразный гелий не горюч, не токсичен, не взрывоопасен. Однако в случае высокой концентрации в воздухе может вызвать состояние кислородной недостаточности и удушье. Жидкий гелий – бесцветная низкокипящая жидкость, способная вызвать обморожение кожи и поражение слизистой оболочки глаз.

Аргон – инертный газ с атомной массой 39,9, в обычных условиях – бесцветный, без запаха и вкуса, примерно в 1,38 раза тяжелее воздуха. Аргон считается наиболее доступным и сравнительно дешевым среди инертных газов.

В промышленности основной способ получения аргона – метод низкотемпературной ректификации воздуха с получением кислорода и азота и попутным извлечением аргона. Также аргон получают в качестве побочного продукта при получении аммиака.

Газообразный аргон хранится и транспортируется в стальных баллонах (по ГОСТ 949-73). Баллон с чистым аргоном окрашен в серый цвет, с надписью «Аргон чистый» зеленого цвета.

Аргон не взрывоопасен и не токсичен, однако при высокой концентрации в воздухе может представлять опасность для жизни: при уменьшении объемной доли кислорода ниже 19% появляется кислородная недостаточность, а при значительном снижении содержания кислорода возникают удушье, потеря сознания и даже смерть.

Ацетилен – бесцветный горючий газ C2H2 с атомной массой 26,04, немного легче воздуха. Обладает резким запахом.

В промышленности ацетилен обычно получают из карбида кальция (CaC2) при разложении последнего водой.

Ацетилен самовоспламеняется при температуре 335°С, смесь ацетилена с кислородом воспламеняется при температуре 297–306°С, смесь ацетилена с воздухом – при температуре 305–470°С.

Ацетилен взрывоопасен при следующих условиях:

при увеличении температуры более 450–500°С и давления более 1,5–2 ат (около 150–200 кПа);

при атмосферном давлении ацетилено-кислородная смесь с содержанием ацетилена от 2,3 до 93% взрывается от искры, пламени, сильного местного нагрева и др.;

при аналогичных условиях смесь ацетилена с воздухом взрывается при содержании в ней ацетилена от 2,3 до 80,7%;

в результате длительного соприкосновении ацетилена с серебром или медью образуется взрывчатое ацетиленистое серебро или медь, взрывающиеся при повышении температуры или ударе.

Пропан-бутан – смесь двух нефтяных углеводородных газов, пропана C3H8 и бутана C4H10. Пропан-бутановая смесь в газообразном состоянии является бесцветной, не ядовитой, тяжелее воздуха, обладает резким запахом от одорантов – сильнопахнущих веществ, добавляемых в газ для обнаружения возможной утечки. При понижении температуры и повышении давления смесь переходит в жидкое состояние.

Бутан C4H10 обладает большей теплотворной способностью, чем пропан, однако имеет более высокую температуру начала газообразования (-0,5 °С у бутана и -42°С у пропана). В связи с этим при температуре ниже -0,5°С отбор газообразного бутана не представляется возможным. Смесь с содержанием бутана от 5 до 30% (с преобладанием пропана) имеет повышенную теплотворную способность и может использоваться в условиях холодного климата с температурой окружающей среды примерно до -25°С.

Сжатый воздух в больших баллонах-емкостях охлаждается. Затем его подвергают быстрому расширению через узкие каналы, снабженные турбинками для дополнительного отбора энергии у молекул газа. Эти устройства называются турбодетандерами. При расширении любого газа всегда происходит его охлаждение. Если газ был сжат очень сильно, то его расширение может привести к такому сильному охлаждению, что часть воздуха сжижается. Жидкий воздух собирают в специальные сосуды

жидкий кислород кипит при более "высокой" температуре (-183 оС), чем жидкий азот (-196 оС). Поэтому при "нагревании" жидкого воздуха, когда температура этой очень холодной жидкости медленно повышается от -200 оС до -180 оС, прежде всего при -196 оС перегоняется азот (который опять сжижают) и только следом перегоняется кислород. Если такую перегонку жидких азота и кислорода произвести неоднократно, то можно получить весьма чистый кислород. Обычно его хранят в сжатом виде в стальных баллонах, окрашенных в голубой цвет. Характерная голубая окраска баллонов нужна для того, чтобы нельзя было спутать кислород с каким-нибудь другим сжатым газом.