- •4)Биологические мембраны, их строение и функциональные особенности. Ионные каналы, их классификация и роль. Виды транспорта веществ через биологические мембраны.
- •5) Мембранный потенциал покоя. Современные представления о механизме его происхождения. Метод его регистрации.
- •8) Возбудимость. Изменение возбудимости в процессе возбуждения.
- •43.Биоэнергетика организма. Методы определения энергетического обмена. Основной обмен и факторы, влияющие на его величину. Клиническое значение основного обмена.
- •59. Дыхание, его основные этапы. Механизмы внешнего дыхания. Биомеханика вдоха и выдоха.
- •14)Ультрамикроскопическая структура миофибриллы в покое и при сокращении. Сократительные и регуляторные белки. Современное представление о механизме мышечного сокращения и расслабления.
- •54. Эритроциты, строение, количество функций. Гемоглобин, количество, его виды, соединения и их физиологическое значение.
- •114 Биофизические основы электрокардиографии. Основные отведения экг. Клиническое значение.
- •18) Мионевральный синапс. Механизм передачи возбуждения в нем. Потенциал концевой пластинки
- •108.Факторы, влияющие на соэ, клиническое значение показателя
- •19) Классификация нервных волокон. Распространения возбуждения по безмиелиновым и миелиновым нервным волокнам. Характеристика их возбудимости и лабильности. Законы проведения возбуждения по нерву.
- •48.Пищеварение двенадцатиперстной кишке. Состав и свойства секрета поджелудочной железы. Регуляция панкреатической секреции.
- •119Особенности легочного кровообращения.
- •24) Возбуждающие синапсы, их медиаторы и рецепторы к ним. Особенности
- •49.Роль печени в пищеварении. Состав и свойства желчи. Регуляция образования желчи и выделения ее в двенадцатиперстную кишку.
- •120 Особенности коронарного кровообращения.
- •40. Особенности внд человека. Учение и.П.Павлова о типах высшей нервной деятельности и о 1-й и 2-й сигнальных системах.
- •58. Резус-фактор. Учет резус-принадлежности крови в клинике. Резус-конфликт между матерью и плодом.
- •42.Сон, его электрофизиологическая характеристика и значение для организма. Фазы сна. Теории сна.
- •32. Симпатический отдел внс и его морфо-функциональные особенности.
- •45.Температура тела человека. Температура кожных покровов и внутренних органов. Теплопродукция и теплоотдача и их механизмы. Изотермия и ее регуляция.
- •122Особенности почечного кровотока. Роль гидростатического давления крови в ультрафильтрации.
- •42.Сон, его электрофизиологическая характеристика и значение для организма. Фазы сна. Теории сна.
- •47.Пищеварение в желудке. Состав и свойства желудочного сока. Фазы отделе¬ния желудочного сока. Регуляция желудочной секреции. Приспособительный характер секреторной деятельности желудка.
- •1) Понятие о гомеостазе и гомеокинезе. Саморегуляторные принципы поддержания постоянства внутренней среды организма.
- •79. Слуховой анализаторпредставляет собой совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания.
- •20) Лабильность. Парабиоз и его фазы (н.Е.Введенский).
- •61. Газообмен в легких и тканях. Основные закономерности перехода газов че¬рез мембрану. Парциальное давление и напряжение газов.
- •118 Физиологические основы гипертензии.
- •29) Вторичное торможение. Его виды. Механизм возникновения. Принципы координационной деятельности цнс (конвергенция, общий конечный пункт, дивергенция, иррадиация, реципрокность, доминанта).
- •9) Законы раздражения. Закон силы. Закон «все или ничего» и его относительный характер
- •10) Законы раздражения. Закон «силы времени». Понятие о реобазе и хронаксии. Хронаксиметрия и ее клиническое значение
- •12) Законы раздражения. Полярный закон. Физиологический электротон. Катодическая депрессия.
- •13) Законы раздражения. Закон градиента. Аккомодация, скорость аккомодации и ее мера.
- •59. Дыхание, его основные этапы. Механизмы внешнего дыхания. Биомеханика вдоха и выдоха.
- •15) Виды и режимы мышечного сокращения. Одиночное мышечное сокращение и его фазы. Сила и работа мышц. Правило средних нагрузок
- •125 Физиологические основы обезболивания и наркоза.
- •36. Уровни регуляции вегетативных функций. Гипоталамус как высший подкор¬ковый центр регуляции вегетативных функций.
- •30) Структурно-функциональные особенности соматической и вегетативной нервной системы.
- •114 Биофизические основы электрокардиографии. Основные отведения экг. Клиническое значение.
- •25) Тормозные синапсы и их медиаторы. Механизм развития тормозного постсинаптического потенциала (тпсп). Взаимодействие тормозные и возбуждающих синапсов
- •47.Пищеварение в желудке. Состав и свойства желудочного сока. Фазы отделе¬ния желудочного сока. Регуляция желудочной секреции. Приспособительный характер секреторной деятельности желудка.
- •6) Потенциал действия, его фазы. Современное представление о механизме его генерации.
- •105.Дыхание в измененных условиях внешней среды. Горная (высотная) бо¬лезнь, водолазная и кессонная болезнь, их физиологические механизмы.
8) Возбудимость. Изменение возбудимости в процессе возбуждения.
Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.
Возбудимая клетка может находиться в двух дискретных состояниях: • состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы); • состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).
В организме существует 3 типа возбудимых клеток: • нервные клетки (возбуждение проявляется генерацией электрического импульса); • мышечные клетки (возбуждение проявляется сокращением); • секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).
Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки.
• Супернормальная возбудимость (экзальтация) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.
• Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.
• Относительная рефрактерность – состояние, в котором возбудимость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.
• Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации
43.Биоэнергетика организма. Методы определения энергетического обмена. Основной обмен и факторы, влияющие на его величину. Клиническое значение основного обмена.
В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Теплота, выделяющаяся непосредственно при окислении питательных веществ, получила название первичной теплоты. Аккумулированная в АТФ энергия используется в дальнейшем для механической работы, химических, транспортных, электрических процессов и, в конечном счете, тоже превращается в теплоту, обозначаемую вторичной теплотой. Вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.
Для определения энергообразования в организме используют прямую калориметрию, непрямую калориметрию и исследование валового обмена.
Методы исследования энергообмена
Прямая калориметрия
Прямая калориметрия основана на непосредственном учете в биока¬лориметрах количества тепла, выделенного организмом. Биокалориметр представляет собой герметизированную и хорошо теплоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере человеком или животным, нагре¬вает циркулирующую воду. По количеству протекающей воды и измене¬нию ее температуры рассчитывают количество выделенного организмом тепла.
Методы прямой калориметрии очень громоздки и сложны. Учитывая, что в основе теплообразования в организме лежат окислительные процес¬сы, при которых потребляется О2 и образуется СО2, можно использовать косвенное, непрямое, определение теплообразования в организме по его газообмену — учету количества потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма.
Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии). Кратковременное определение газообмена в условиях лечебных учрежде¬ний и производства проводят более простыми некамерными методами (от¬крытые способы калориметрии).
Наиболее распространен способ Дугласа—Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого.
Количество тепла, освобождающегося после потребления организмом 1л О2, носит название калорического эквивалента кислорода. Зная общее количество О2, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества — белки, жиры или углеводы, окислились. Показателем этого может служить дыхательный коэффициент.
Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2. ДК различен при окислении белков, жиров и углеводов.
При окислении жиров ДК равен 0,7
при окислении белка в организме ДК равен 0,8. При смешанной пище у человека ДК обычно ра¬вен 0,85—0,89. Определенному ДК соответствует определенный калориче¬ский эквивалент кислорода.
Способ неполного газового анализа благодаря своей простоте получил широкое распространение.
Основной обмен
Интенсивность окислительных процессов и превращение энергии зави¬сят от индивидуальных особенностей организма (пол, возраст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внутренних органов — печени, почек, пищеварительного тракта и др.), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии и др.).
Для определения присущего данному организму уровня окислительных процессов и энергетических затрат проводят исследование в определенных стандартных условиях. Энерготраты организма в таких стандартных условиях получили название основного обмена.
Для определения основного обмена обследуемый должен находиться: 1) в состоянии мышечного покоя (положение лежа с расслабленной мус¬кулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение; 2) натощак, т.е. через 12—16 ч после приема пищи; 3) при внешней температуре «комфорта» (18—20 °С), не вызывающей ощущения холода или жары.
Основной обмен определяют в состоянии бодрствования. Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в килоджоулях (килокалориях) на 1 кг массы тела или на 1 м2 поверхности тела за 1 ч или за 1 сут.
Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (I ккал) на I кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже.
Формулы и таблицы основного обмена представляют средние данные, выведен¬ные из большого числа исследований здоровых людей разного пола, возраста, массы тела и роста.
Клиническое значение. Определение основного обмена, согласно этим таблицам, у здоровых людей нормального телосложения дают приблизительно верные (ошибка 8 %) величины затраты энергии. Несоразмерно высокие данные для определенной массы тела, роста, возраста и поверхности тела величины основного обмена наблюдаются при избыточной функции щитовидной железы. Понижение основного обмена встречается при недостаточности шитовидной железы (микседема), гипофиза, половых желез.
Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.
