Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (2).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.38 Mб
Скачать

Билет 2

4)Биологические мембраны, их строение и функциональные особенности. Ионные каналы, их классификация и роль. Виды транспорта веществ через биологические мембраны.

Цитоплазматическая клеточная мембрана состоит из трех слоев:

• наружного - белкового;

• среднего - бимолекулярного слоя липидов;

• внутреннего - белкового. Толщина мембраны 7,5-10 нм.

Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами, погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды, 15-30% холестерин. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрану, и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы. Периферическими белками являются хеморецепторы

Функции мембраны: 1. обеспечивает целостность клетки как структурной единицы ткани; 2. осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью; 3. обеспечивает активный транспорт ионов и других веществ в клетку и из нее; 4. производит восприятие и переработку информации, поступающей к клетке в виде химических и электрических сигналов.

Классификация и структура ионных каналов цитоплазматической мембраны

внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем, что в клеточную мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора.

Все ионные каналы подразделяются на следующие группы:

1. По избирательности: а) селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов; б) малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество.

2. По характеру пропускаемых ионов: а) калиевые; б) натриевые; в) кальциевые; г) хлорные.

3. По скорости инактивации, т.е. закрывания: а) быстроинактивирующиеся,. б) медленноинактирующиеся.

4. По механизмам открывания: а) потенциалзависимые, б) хемозависимые,

В настоящее время установлено, что ионные каналы имеют следующее строение: 1. Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго определенных ионов. 2. Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависимых каналов имеется сенсор, который открывает их при определенном уровне МП. 3. Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП. Неспецифические ионные каналы не имеют ворот. Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (m) и инактивационных (h) ворот: 1. закрытом, когда активационные закрыты, а инактивационные открыты; 2. активированном, и те и другие ворота открыты; 3. инактивированном, активационные ворота открыты, а инактивационные закрыты.

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны для калия и натрия в состоянии покоя составляет 1:0,04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов.

Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е., накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ионы. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Это связано с тем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрий-калиевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны.

Натрий-калиевый насос – это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неѐ. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия. Так как в клетку поступает меньше положительно заряженных ионов, чем выводится из неѐ, натрий-калиевая АТФ-аза на 5-10 мВ увеличивает мембранный потенциал.

В мембране имеются следующие механизмы трансмембранного транспорта ионов и других веществ: 1. Активный транспорт. Он осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калиевый насос, кальциевый насос, хлорный насос. 2. Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неѐ по калиевым каналам. 3. Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например, таким образом происходит натрий-кальциевый, калий-калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкм стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец.

70. Внутриклеточная регуляция. Этот уровень регуляции заключается в способности кардиомиоцитов синтезировать различные белки в соответствии с уровнем их разрушения. Особенностью кардиомиоцитов является цикличность их обменных процессов, связанных с ритмом сердечной деятельности. Наиболее быстрый распад богатых энергией создинений - АТФ и гликогена - происходит в момент систолы и соответствует комплексу QRS электрокардиограммы. Ресинтез и восстановление уровня этих веществ происходит за время диастолы. Поэтому при чрезвычайных условиях при усиленной работе сердца одним из компенсаторных механизмов, адаптирующих деятельность сердца к воздействиям, является удлинение фазы диастолы. Кардиомиоциты способны избирательно адсорбировать из циркулирующей крови и накапливать в цитоплазме вещества, поддерживающие и регулирующие их биоэнергетику, а также соединения, повышающие потребность клеток в кислороде.

Межклеточная регуляция. В сердечной мышце межклеточная регуляция связана с наличием вставочных дисков-нексусов, обеспечивающих транспорт необходимых веществ, соединение миофибрилл, переход возбуждения с клетки на клетку. Такая организация позволяет функционировать миокарду на возбуждение как синцитий. Межклеточная регуляция включает также взаимодействие кардиомиоцитов с соединительно-тканными клеткам составляющих строму сердечной мышцы.

Внутрисердечная нервная регуляция. Этот уровень является автономным хотя он включен и в сложную иерархию центральной нервной регуляции. Собственная нервная регуляция сердца осуществляется метасимпатической нервной системой, нейроны которой располагаются в интрамуральных ганглиях сердца. Интракардиальный метасимпатический нервный аппарат регулирует ритм сердечных сокращений, скорость предсердно-желудочкового проведения, реполяризацию кардиомиоцитов, скорость диастолического расслабления. Все это направлено в организме на поддержание стабильного наполнения кровью артериальной системы.

Билет 3