- •1. Вах полупроводникового диода. Электронные процессы в p-n переходе.
- •2. Принцип действия биполярного транзистора и его основные параметра. Статический вах транзистора с об и оэ.
- •3. Принцип действия полевого транзистора. Вах полевого транзистора
- •4. Статические режимы работы каскадов a,b,c,d. Усилительные каскады с об, оэ, ок.
- •5. Фчх, aчх, передаточная и амплитудная характенристики усилителей.
- •7. Генераторы син-х колебаний
- •9. Электронные ключи
- •1.1.Статические состояния ключа "оэ".
- •1.1.1.Режим отсечки
- •1.1.2. Нормальный активный режим
- •1.1.3. Режим насыщения
- •10. Типовые схемы на операционных усилителях
- •11. Релаксационные генераторы
- •12. Силовые ключи
- •13. Аналоговые и ключевые стабилизаторы напряжения.
- •Параметрический стабилизатор напряжения
- •Компенсационный стабилизатор напряжения
- •Импульсный стабилизатор
1. Вах полупроводникового диода. Электронные процессы в p-n переходе.
Диодами называют двухэлектродные элементы, обладающие односторонней проводимостью тока, обусловленной применением полупроводниковой структуры, сочетающей в себе два слоя: один с электронной, другой с дырочной электропроводностью (см. рис. 1а).
Электронные процессыпри отсутствии напряжения: обычно концентрация акцепторной примеси намного больше концентрации донорной примеси.
Диффузионный ток – движение дырок навстречу электронам, дрейфовый ток создан не основными носителями заряда, эти токи направлены встречно и равны друг другу.
При наличии внешнего напряжения, в прямом направлении:сужение p-n перехода, и увеличение диффузионного тока через него – инжекция носителей через p-n переход. Iпр=Iдрейф-Iдиффуз, Iдрейф=Const. С повышением прямого напряжения, потенциальный барьер ещё больше повышается, а Iдиффуз уменьшается. Включение в обратном направлении: уменьшается диффузионный ток, дрейфовый не уменьшается, но он больше диффузионного. Iобр=Iдрейф-Iдиф. (Величина тока зависит от площади перехода). Обратный ток – тепловой ток.
Полная ВАХ диода (в I квадранте масштаб на 3 порядка больше, чем в III).
S – площадь перехода, Iдрейф – дрейфовая плотность тока.
0-1: Сказывается объемное сопротивление слоев p-n структуры, которое растет с ростом тока, когда существенно увеличивается падение напряжения на диоде Uпр. В кремниевых диодах Uпр = 0,8...1,2В (из-за большого удельного сопротивления), в германиевых Uпр = 0,3...0,6В.
1-2: Оказывает влияние ТОК УТЕЧКИ через поверхность p-n перехода и ГЕНЕРАЦИЯ НОСИТЕЛЕЙ ЗАРЯДА, которая является причиной возможного пробоя p-n перехода. Ток утечки линейно зависит от величины приложенного к диоду обратного напряжения Uобр,: ток утечки создается различными загрязнениями на внешней поверхности полупроводниковой структуры, которые увеличивают проводимость кристалла и обратный ток через диод Iобр.
2-3: (Генерация зарядов начинается, когда Uобр >Uдоп). Изменение характеристики до пробоя.
3-4: Резкое возрастание обратного тока, оно характеризует пробой p-n перехода. Пробой бывает электронный и тепловой. Электронный пробой бывает лавинный и туннельный. Лавинный возникает при энергии достаточной до отрыва электрона, образуется пара, которая ускоряется и т.д.. Он возникает в широких p-n переходах. Туннельный пробой, под действием электрического поля, происходит непосредственный отрыв электронов, без столкновения, увеличивается обратный ток, возникает в узких p-n переходах.
5-4: Тепловой пробой. Разрушение локального участков и превышение критической концентрации электронов.