- •Основные понятия теории управления. Принципы управления
- •1.1. Понятия об управлении и системах управления. Составляющие процесса управления
- •1.2. Принципы управления
- •1.2.1. Принцип разомкнутого управления
- •1.2.2. Принцип компенсации
- •1.2.3. Принцип замкнутого управления
- •1.2.3. Принцип комбинированного управления
- •1.3. Классификация систем управления
- •1.3.1. Классификация систем управления по информационному признаку
- •1.3.2. Классификация систем управления по типу сигналов
- •1.3.3. Классификация систем управления по алгоритмам управления
- •1.3.4. Классификация систем управления по энергетическому признаку
- •1.4. Поведение объектов и систем управления
- •1.4.1. Поведение объектов управления
- •1.4.2. Поведение систем управления
- •1.4.3. Типовое поведение систем управления
- •1.5. Задачи теории управления
- •2. Линейные модели и характеристики систем управления
- •2.1. Дифференциальные уравнения
- •2.2. Передаточные функции
- •2.3. Временные характеристики
- •2.4. Частотные характеристики
- •2.5. Cистемы управления с типовой структурой
- •2.6. Связь пф замкнутой и разомкнутой типовой су. Характеристический полином типовой су
- •2.6.1. Пф по управлению
- •2.6.2. Пф по ошибке
- •3. Типовые звенья систем управления
- •3.1. Пропорциональное звено
- •3.2. Интегрирующее звено (интегратор)
- •Идеальное дифференцирующее звено
- •3.4. Апериодическое звено первого порядка
- •3.5. Пропорционально-дифференцирующее звено
- •4.Построение частотных характеристик соединений типовых звеньев систем управления
- •4.1. Логарифмические чх последовательного соединения типовых звеньев
- •4.1.1. Построение лах
- •4.1.2. Построение лфх
- •4.2. Алгоритм построения лах последовательного соединения типовых звеньев
- •4.3. Пример построения лчх астатической системы управления
- •4.4. Пример построения лчх статической системы управления
- •4.5. Пример построения лчх реального дифференцирующего звена
- •4.6. Предельные соотношения лчх. Влияние вариаций параметров на лчх соединений звеньев
- •4.6.1.Предельные соотношения лчх соедининй звеньев
- •4.6.2. Влияние вариаций параметров на лчх соединений звеньев
- •5.Взаимосвязь частотных и временных характеристик систем управления
- •5.1. Действие обратной связи в системах управления
- •5.2. Полоса пропускания и быстродействие
- •5.3. Примеры сопоставления частотных и временных
- •5 Рис. 5.6 .3.2. Статическая система управления
- •5.4. Синтез систем управления по требованиям
- •6.Вынужденные движения в системах управления
- •6.1. Типовые входные воздействия для систем управления. Установившиеся движения с су
- •6.2. Расчет установившихся ошибок
- •6.2.1. Статическая су
- •6.2.2. Система с астатизмом первого порядка
- •6.2.3. Система с астатизмом второго порядка
- •6.3. Анализ соответствия астатизма су и ее функционального назначения
- •7.Устойчивость систем управления
- •7.1. Характеристический полином замкнутой су. Алгебраические критерии устойчивости
- •7.2. Частотные критерии устойчивости су
- •7.2.1. Формулировка критерия Найквиста для афх
- •7.2.2. Применение критерия Найквиста для лчх
- •7.3. Синтез систем управления с целью обеспечения устойчивости и качества переходных процессов
- •7.3.1. Типовая частотная характеристика су
- •7.3.2. Формирование типовой частотной характеристики
- •7.3.4. Нахождение оператора звена последовательной коррекции
- •8.Системы управления со сложной структурой
- •8.1. Задача преобразования моделей
- •8.2. Необходимые сведения из теории графов
- •8.3. Определитель графа. Характеристический полином сложной системы управления
- •8.4. Получение пф по структурной схеме сложной су
5.2. Полоса пропускания и быстродействие
систем управления
Продолжим рассмотрение примера из подразд.5.1. Переходная характеристика апериодического звена является экспонентой со временем окончания процесса tр=3T (см.п.1.4.2 и подразд.3.4). В этом случае:
(с). (5.3)
В выражении (5.3) коэффициент связывает быстродействие системы с ее частотной полосой пропускания; в данном случае =3.
Экспонента является апериодическим процессом; время первого согласования t1, характеризующее быстродействие, и время регулирования tр, т.е. время окончания процесса, совпадают (см.подразд.1.4).
Таким образом, полоса пропускания п и быстродействие системы находятся в обратно-пропорциональной зависимости – см.рис.5.3.
Р
ис.5.3
На рис.5.3,а показана АЧХ замкнутой системы при K=1 – кривая 1. Эта ЧХ соответствует апериодическому звену Ф(s)=1/(Ts+1), T=1c). В отличие от рассмотренных ранее ЧХ, в данном случае построены не логарифмические АЧХ R(). При K=1 имеем п=1рад/с.
На рис.5.3,б, построена переходная характеристика замкнутой системы при K=1 кривая 1. Время процесса tр1=3/п1=3с.
Увеличим в два раза усиление в прямом канале системы, то есть положим K=2. При этом ЛАХ LР() (прямая с наклоном –20дБ/дек) поднимется на 6 дБ, в результате чего получим ср=c=п=2рад/с. Этому будет соответствовать кривая 2 на АЧХ (рис.5.3,а) с увеличенной в два раза полосой пропускания. Время переходного процесса наоборот уменьшится в два раза: tр2=3/п2=1.5с – кривая 2 на рис.5.3,б.
Уменьшим в два раза усиление в прямом канале системы, то есть положим K=0.5. При этом ЛАХ LР() опустится на 6дБ (относительно исходной ситуации при K=1) и ср=c=п=0.5рад/с. Этому соответствует кривая 3 на АЧХ (рис.5.3,а) с уменьшенной в два раза полосой пропускания. Время переходного процесса наоборот увеличится в два раза: tр3=3/п3=6с.
Заметим, что быстродействие системы мы изменяли не за счет варьирования какой-либо инерционности (постоянной времени). В исходной системе – рис.5.1, WР(s)=K/s такого параметра вообще не присутствует. Полоса пропускания, а следовательно, и быстродействие, обеспечивались усилением в прямом канале системы. Так как рассматриваем СУ с единичной обратной связью, то это усиление совпадает с контурным усилением, то есть коэффициентом передачи контура обратной связи.
5.3. Примеры сопоставления частотных и временных
характеристик систем управления
Проверим выявленные выше закономерности на примерах СУ, рассмотренных в подразд.4.3 и 4.4, где описаны модели и подробно рассмотрен процесс построения ЛЧХ этих систем.
Рис. 5.4
система управления
Модель СУ приведена в подразд.4.3. Оператор WР(s) задан выражением (4.3). На рис.4.4 подробно отображены ЛЧХ и процесс их построения.
На рис.5.4 показаны ЛЧХ разомкнутой и замкнутой СУ.
Видно, что в диапазоне частот, где усиления в разомкнутом контуре большие, ЧХ разомкнутой и замкнутой систем существенно различаются; модуль ЧХ замкнутой системы R()1 (L()0дБ). На частотах, где LР()0, ЧХ разомкнутой и замкнутой систем совпадают – обратная связь здесь “не работает”.
Ч
Рис.
5.5
ср=0.74п . (5.4)
Переходная характеристика СУ приведена на рис.5.5. Заметим, что время окончания процесса tр превосходит время первого согласования t1 почти в пять раз.
Оценим коэффициент, связывающий быстродействие и полосу пропускания для этой системы:
(с). (5.5)
Некоторое отклонение значения коэффициента =2.6 от приведенного в (5.3) объясняется отличием вида переходного процесса от экспоненты – см.рис.5.5.
