- •Основные понятия теории управления. Принципы управления
- •1.1. Понятия об управлении и системах управления. Составляющие процесса управления
- •1.2. Принципы управления
- •1.2.1. Принцип разомкнутого управления
- •1.2.2. Принцип компенсации
- •1.2.3. Принцип замкнутого управления
- •1.2.3. Принцип комбинированного управления
- •1.3. Классификация систем управления
- •1.3.1. Классификация систем управления по информационному признаку
- •1.3.2. Классификация систем управления по типу сигналов
- •1.3.3. Классификация систем управления по алгоритмам управления
- •1.3.4. Классификация систем управления по энергетическому признаку
- •1.4. Поведение объектов и систем управления
- •1.4.1. Поведение объектов управления
- •1.4.2. Поведение систем управления
- •1.4.3. Типовое поведение систем управления
- •1.5. Задачи теории управления
- •2. Линейные модели и характеристики систем управления
- •2.1. Дифференциальные уравнения
- •2.2. Передаточные функции
- •2.3. Временные характеристики
- •2.4. Частотные характеристики
- •2.5. Cистемы управления с типовой структурой
- •2.6. Связь пф замкнутой и разомкнутой типовой су. Характеристический полином типовой су
- •2.6.1. Пф по управлению
- •2.6.2. Пф по ошибке
- •3. Типовые звенья систем управления
- •3.1. Пропорциональное звено
- •3.2. Интегрирующее звено (интегратор)
- •Идеальное дифференцирующее звено
- •3.4. Апериодическое звено первого порядка
- •3.5. Пропорционально-дифференцирующее звено
- •4.Построение частотных характеристик соединений типовых звеньев систем управления
- •4.1. Логарифмические чх последовательного соединения типовых звеньев
- •4.1.1. Построение лах
- •4.1.2. Построение лфх
- •4.2. Алгоритм построения лах последовательного соединения типовых звеньев
- •4.3. Пример построения лчх астатической системы управления
- •4.4. Пример построения лчх статической системы управления
- •4.5. Пример построения лчх реального дифференцирующего звена
- •4.6. Предельные соотношения лчх. Влияние вариаций параметров на лчх соединений звеньев
- •4.6.1.Предельные соотношения лчх соедининй звеньев
- •4.6.2. Влияние вариаций параметров на лчх соединений звеньев
- •5.Взаимосвязь частотных и временных характеристик систем управления
- •5.1. Действие обратной связи в системах управления
- •5.2. Полоса пропускания и быстродействие
- •5.3. Примеры сопоставления частотных и временных
- •5 Рис. 5.6 .3.2. Статическая система управления
- •5.4. Синтез систем управления по требованиям
- •6.Вынужденные движения в системах управления
- •6.1. Типовые входные воздействия для систем управления. Установившиеся движения с су
- •6.2. Расчет установившихся ошибок
- •6.2.1. Статическая су
- •6.2.2. Система с астатизмом первого порядка
- •6.2.3. Система с астатизмом второго порядка
- •6.3. Анализ соответствия астатизма су и ее функционального назначения
- •7.Устойчивость систем управления
- •7.1. Характеристический полином замкнутой су. Алгебраические критерии устойчивости
- •7.2. Частотные критерии устойчивости су
- •7.2.1. Формулировка критерия Найквиста для афх
- •7.2.2. Применение критерия Найквиста для лчх
- •7.3. Синтез систем управления с целью обеспечения устойчивости и качества переходных процессов
- •7.3.1. Типовая частотная характеристика су
- •7.3.2. Формирование типовой частотной характеристики
- •7.3.4. Нахождение оператора звена последовательной коррекции
- •8.Системы управления со сложной структурой
- •8.1. Задача преобразования моделей
- •8.2. Необходимые сведения из теории графов
- •8.3. Определитель графа. Характеристический полином сложной системы управления
- •8.4. Получение пф по структурной схеме сложной су
5.Взаимосвязь частотных и временных характеристик систем управления
В данном разделе рассматривается следующий круг вопросов:
действие обратной связи на разных частотных диапазонах;
связь частотных характеристик разомкнутой и замкнутой СУ;
связь частотной полосы пропускания с быстродействием СУ.
Установление соответствия между характеристиками и показателями качества в частотной и временной областях позволяет более корректно решать задачи анализа и синтеза СУ.
5.1. Действие обратной связи в системах управления
Б
Рис.
5.1
Для выяснения характера действия обратной связи на динамическую систему рассмот-рим сначала пример охвата пропорционального (то есть безынерционного) звена единич-ной отрицательной обратной связью. Положим WР(s)=K и определим передачу Ф(s) замкнутой системы при разных значениях K.
Связь ПФ разомкнутой и замкнутой типовой СУ получена в подразд.2.6. Для случая безынерционного звена имеем
. (5.1)
-
K
Ф
K/Ф*100(%)
1000
0.9991
105
100
0.991
104
10
0.9091
1100
1
0.5
200
0.1
0.091
10
0.01
0.00990.01K
1
0.001
0.000990.001K
0.1
Cуть приведенных в таблице значений заключается в следующем. Степень влияния обратной связи зависит от коэффициента передачи охватываемого звена. При больших коэффициентах изменение значительно. При K10 имеем Ф1. При малых коэффициентах охватываемого звена характеристики разомкнутого и замкнутого звеньев меняются незначительно, то есть обратная связь “не действует”. При K0.1 имеем ФK.
АЧХ некоторого динамического звена или всей СУ представляет собой зависимость коэффициента передачи от частоты. Следует ожидать, что обратная связь будет по-разному проявлять свое действие на разных частотах ЧХ.
Рассмотрим случай охвата единичной отрицательной обратной связью интегрирующего звена WР(s)=K/s. Используя (2.21), получим
. (5.2)
Таким образом, в результате охвата интегратора обратной связью образуется апериодическое звено с единичным коэффициентом передачи (вне зависимости от K) и с постоянной времени T=1/K.
Н
а
рис.5.2
построены ЛАХ разомкнутой системы (в
данном случае – интегрирующего звена
с K=1)
и замкнутой системы.
Рис.5.2
Из графиков видно, что при значительных усилениях в прямой цепи (LР()16 дБ) различия между ЛАХ разомкнутой и замкнутой системами велики и логарифмический модуль ЧХ замкнутой системы L()0 дБ (R()1). На высоких частотах, где LР()16 дБ, ЛАХ разомкнутой и замкнутой систем практически совпадают.
По АЧХ замкнутой системы определяют тот диапазон частот [0, п], при котором R()1 и выходная координата y(t) “воспроизводит” входной управляющий сигнал f(t). Этот диапазон частот называется полосой пропускания системы. Правая граница этого диапазона – частота пропускания п – обычно определяется из условия R(п)=0.707R(0) (изменение модуля на –3 дБ).
Для рассматриваемого случая п=c=ср, то есть совпадает с частотой сопряжения апериодического звена и частотой среза интегратора (см.подразд.3.2, 3.4).
Рассмотренная на данном примере ситуация в плане действия обратной связи является закономерной для любых динамических систем, образованных соединением различных звеньев. Это будет проиллюстрировано на примерах в подразд.5.3.
