- •3 Характеристика сырьевых материалов и выпускаемой продукции
- •4. Выбор и обоснование способа производства
- •5. Технология производства керамического кирпича
- •6. Расчет сырьевой смеси
- •7. Расчет материального баланса
- •7. Расчет материального баланса:
- •8. Расчет и подбор основного технологического оборудования
- •9. Организация технологического контроля
- •10.2 Характеристика сырьевых материалов и методы исследования
- •10.3 Результаты экспериментов
- •10.4 Выводы по научной части
- •11. Охрана окружающей среды
- •12. Охрана труда и техника безопасности
5. Технология производства керамического кирпича
Схема 1
Добыча и усреднение глины
Перед началом работ по добыче глины на карьерах проводят подготовительные и вскрышные работы, обеспечивающие в дальнейшем нормальную бесперебойную работу по добыче.
При подготовительных работах удаляют растительность, устраивают водоотводные канавы и подъездные пути. В качестве машины для удаления растительности служат кусторезы, корчеватели.
При вскрышных работах удаляют растительный слой, почву, подзол, песок, т.е. все непригодные для производства слои, покрывающие толщу глины. Землеройное оборудование и способ вскрышных работ выбирают в соответствии с особенностями месторождения и рельефа местности на основе проекта разработки карьера. Для вскрышных работ применяют колесные скреперы, бульдозеры, иногда многоковшовые экскаваторы, а в отдельных случаях гидромониторы [22,23].
В качестве глинодобывающих машин применяют, как правило, многоковшовые и одноковшовые экскаваторы. В отдельных случаях используют скреперы, бульдозеры и струги. Однако эти машины целесообразно применять лишь при благоприятных горногеологических условиях, равномерном и однородном залегании сырья и достаточной мощности.
Свойства глины, добываемой в карьере, неоднородны. По толщине залегания обычно меняется пластичность, засоренность, влажность и химический состав сырья. Поэтому глины, залегаемые в карьерах в их естественном состоянии, без предварительной подготовки непригодны для изготовления кирпича. Для того чтобы получить из имеющегося сырья высококачественный кирпич, необходимо сделать глиняную массу однородной, т.е. усреднить ее.
Усреднение глины производят в процессе ее добычи в карьере, а также путем перевалки ее в открытые глинозапасники, так называемые "конусы" или же в стационарные глинохранилища закрытого типа.
Усреднение глины с дополнительным ее вылеживанием даже в больших массивах улучшает перемешивание разнородных по свойствам слоев глины, содействует некоторому разрушению ее природной структуры, повышает эффективность последующей ее механической обработки [23,27].
В зависимости от объема потребляемой глины, расстояния от места добычи глины к месту ее потребления и рельефа местности выбирают тот или иной вид транспорта: безрельсовый - автомашины, скреперы, бульдозеры; рельсовый - мотовозы, электровозы, канатная тяга. Для внутрицехового транспортирования глины и добавок применяют ленточные конвейеры и ковшовые элеваторы [18,19].
Подготовка добавок
Добавки, применяемые в кирпичном производстве, требуют подготовки, которая заключается в измельчении их до заданного зернового состава или в просеивании. Для подготовки добавок применяют щековые, валковые и молотковые дробилки, шаровые мельницы, барабанные грохоты и др. Выбор дробилки зависит от твердости и размеров кусков измельчаемых добавок. Перед измельчением кварцевый песок подвергают просеву через сито с отверстиями 3 мм для отделения крупных включений. Древесные опилки просеивают через сито с отверстиями 8 - 10 мм.
Угли различных марок (каменные, бурые, антрациты), а также отходы обожженных изделий для приготовления шамота, шлак измельчают на щековых, затем на молотковых или валковых дробилках и просеивают через сито с отверстиями 2 - 3 мм. Прошедший через сито уголь используют как выгорающую добавку в производстве кирпича. Золу ТЭЦ, находящуюся в гидроотвалах и имеющую высокую влажность, сначала при помощи экскаватора и бульдозера окучивают в бурты, в которых зола хранится до потери избыточной воды. Затем до начала зимы золу ТЭЦ завозят на территорию завода и предохраняют от промерзания в крытых запасниках. Из запасников золу ТЭЦ без дополнительной подготовки можно подавать в бункер ленточного дозатора. Подготовка пластифицирующих добавок (бентонитовой глины, сульфитно-спиртовой барды и др.) заключается в смешивании их с водой и доведении до жидкого состояния [27,28].
Дробление глины
Глину, поступающую в производство, подвергают первичному дроблению в стругачах, камневыделительных и дезинтеграторных вальцах, предназначенных также для одновременного удаления из массы твердых включений. Если глину не отделять от включений, то в дальнейшем каменистые твердые включения могут понизить прочностные характеристики кирпича и могут повредить оборудование для его производства[29].
Дезинтеграторные камневыделительные вальцы служат для предварительного дробления пластичных глин и частичного удаления каменистых включений (рис.5.1.2.1). Вальцы состоят из двух валков различного диаметра и с различной скоростью вращения, из которых валок большего диаметра гладкий, а меньшего диаметра ребристый.
Рис.5.1.2.1 - Дезинтеграторные камневыделительные вальцы СМ-150:
а - общий вид, б - схема; 1 - гладкий валок, 2 - ребристый валок, 3 - съемные стальные ребра, 4 - шкив малого валка, 5 - шкив большого валка, 6 - подшипник, 7 - пружина, 8 - передвижные салазки, 9 - рама, 10 - кожух, 11 - воронка, 12 - направляющий лоток, 13 - отводной лоток.
Дезинтеграторные вальцы работают следующим образом: глина, поступающая через загрузочную воронку 11 по направляющему лотку 12, попадает на быстроходный ребристый валок 2. Под ударами ребер этого валка она отбрасывается на гладкий тихоходный валок, который затягивает ее в зазор между валками. Каменистые включения при ударе ребер отбрасываются в сторону гладкого валка, ударяются о верхнюю крышку кожуха 10 и выбрасываются через отводной лоток 13. Эти вальцы применяют для преимущественно в качестве машины для грубого дробления плотных и пластичных глин [19,20].
Винтовые камневыделительные вальцы служат для первичного дробления рыхлых глин и одновременно выделения из них каменистых включений (рис. 5.1.2.2). Винтовые вальцы этого типа имеют винтовую спираль на одном валке, другой валок гладкий. Спираль в виде выступающих ребер отводит поступающие с глиной камни в лоток, находящийся у конца валка.
Рис. 5.1.2.3 - Схема камневыделительных винтовых вальцов СМ-416А:
- электродвигатель, 2 - упругая муфта, 3 - редуктор, 4 - уравнительная муфта, 5 - зубчатые шестерни, 6,8,10,12,14 и 15 - подшипники, 7 - гладкий валок, 9 - винтовой валок, 11 - цепная передача, 13 - очистной винтовой скребок.
К валкам прикреплены очистные скребки. Неподвижный скребок очищает гладкий валок, а подвижный скребок 13 - винтовой валок. Камни выходят с противоположной от привода стороны [35,36].
Формование кирпича
При производстве керамического кирпича используется метод полусухого прессования и метод пластического формования, каждый из которых имеет свои достоинства и недостатки. При наличии рыхлых глин и глин средней плотности с влажностью не выше 23-25% применяют пластический способ переработки глин; для слишком плотных глин, плохо поддающихся увлажнению и обработке с низкой карьерной влажностью (менее 14-16%),-полусухой способ переработки.
Технологическая схема производства изделий с пластическим способом подготовки массы, несмотря на свою сложность и длительность, наиболее распространена в промышленности стеновой керамики. Метод формования из пластических масс исторически сложился на основе пластических свойств глин и широко используется в керамической технологии. Способ пластического формования позволяет выпускать изделия в широком ассортименте, более крупных размеров, сложной формы и большей пустотности. В отдельных случаях предел прочности при изгибе и морозостойкость таких изделий выше, чем у изделий, полученных способом полусухого прессования из того же сырья [27].
При переработке глин в сыром виде схема подготовки сырья несколько проще и экономичней, поскольку нужно меньше перерабатывающего оборудования, следовательно, меньше энергоемкость. Все оборудование более надежно и просто в обслуживании. Температура обжига изделий примерно на 500С ниже, чем у изделий полусухого прессования, что позволяет также снизить энергозатраты на обжиг и в какой-то мере компенсируют высокие затраты на сушку.
Недостатком способа пластического формования является большая длительность технологического цикла за счет процесса сушки сырца, продолжающегося от 1 до 3 суток. Низкая прочность формованного сырца, особенно пустотелого, большая усадка материала при сушке и наличие отдельного процесса сушки затрудняет возможность механизации трудоемких операций при садке сырца на сушку, перекладке высушенного сырца для обжига и совмещения в одном агрегате процессов сушки и обжига.
Чтобы получить изделия требуемого качества необходимо из глины удалить каменистые включения, разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а также придать массе надлежащие формовочные свойства.
Еще одним недостатком метода пластического формования является то, что для получения качественного кирпича глину необходимо качественно переработать, что требует больших затрат на электроэнергию. Поэтому большинство отечественных предприятий использует минимальный комплект перерабатывающего оборудования, что отнюдь не способствует качеству выпускаемого кирпича.
Также пластический метод формования имеет еще несколько преимуществ - широкий ассортимент продукции - от поризованной керамики с пустотностью 50 % и с плотностью до 700-800 кг/м3 до полнотелого клинкерного кирпича с плотностью до 2200-2300 кг/м3, получение кирпича с высокой маркой и морозостойкостью, отработанность технологии, как самой распространенной в мире, большой выбор оборудования.
После ознакомления со всеми недостатками и достоинствами методов формования в дипломной работе для изготовления керамического кирпича будет использоваться пластичный метод формования [22,23,29].
Смешивание сырьевых компонентов
После первичного дробления и частичного удаления крупных включений необходимо смешать глину с добавками. Смешивание сырьевых компонентов имеет важную роль в технологии производства кирпича, так как лучшая гомогенизация сырьевой смеси дает возможность получать качественную продукцию. Для смешивания глины с добавками применяют одновальные и двухвальные смесители. В настоящее время чаще используют двухвальные смесители как более производительные.
Кирпичные заводы оснащены двухвальными смесителями СМК-18 (СМ-246) с пароувлажнением и СМ-447А без пароувлажнения. Лопастный двухвальный смеситель с пароувлажнением СМК-18 (СМ-246) (рис.5.2.1.1) представляет собой корпус в виде корыта, в котором помещены два вала с лопастями 6. Со стороны выгрузочного отверстия 3 конец вала вращается, в опорном подшипнике 4. Смеситель снабжен трубой 7 для подачи пара и трубой 8 для подачи воды. Труба 8 укреплена в верхней части корпуса и снабжена вентилем, которым регулируют подачу воды.
Рис. 5.2.1.1 - Двухвальный смеситель СМ-446:
- упорный подшипник вала, 2 - валы, 3 - корпус, 4 - шестеренчатая передача, 5 - редуктор привода, 6 - электродвигатель, 7 - опорные стойки, 8 - выгрузочное устройство, 9 - труба для подачи пара, 10 - труба для подачи воды, 11 - лопасти.
В днище корпуса устроены щели для распределения пара и люк для выгрузки массы. К нижней части корпуса приварены пять конденсационных цилиндров 2. Эта часть закрыта теплоизоляционным кожухом, заполненным минеральной ватой.
Верх корпуса закрыт корытообразной крышкой 5, которая является его продолжением и служит для сохранения тепла и уменьшения утечки пара; на крышке сделан загрузочный люк.
Двухвальный смеситель без пароувлажнения СМ-447А отличается от описанного отсутствием корытообразной крышки, щелей для подачи пара, конденсационных цилиндров, уменьшенными размерами и производительностью.
Глина и добавки в заданной пропорции непрерывно загружаются в смесители и смешиваются насаженными на валы вращающимися лопастями, которые одновременно продвигают смесь к разгрузочному отверстию. Скорость смешивания и обработку массы регулируют, изменяя угол наклона лопастей.
При работе смесителя необходимо следить за тем, чтобы равномерно подавались компоненты шихты. Нельзя допускать перегрузки смесителя.
Корпус смесителя должен бытъ накрыт металлической решеткой. Становиться на нее, а также проталкивать массу сквозь решетку каким-либо предметом запрещается. Брать пробу глины из смесителя во время его работы можно только специальным совком. В процессе работы не допускается открывать крышку и снимать решетку [19-21,31,35].
Вторичное измельчение и обработка глиняной массы.
Для вторичного измельчения и обработки глиняной массы применяют дырчатые вальцы, бегуны мокрого помола и глинорастиратели. В зависимости от свойств массы и требуемой степени ее обработки в технологическую линию включают ту или иную машину или две из них [17,19].
Бегуны мокрого помола СМ - 365 (рис.5.2.2.1) являются наиболее мощными и состоят из следующих основных узлов: станины 20, представляющей собой металлические колонны, которые связаны крестовиной; ступицы; чугунной чаши 16, в которой расположены стальные плиты 17 с овальными продолговатыми отверстиями и сплошные плиты 18; вертикального вала 4, нижним концом опирающегося на шариковый подпятник; центральной головки; двух катков 22; разгрузочной тарели 13 и кожуха 8.
Рабочим органом являются катки. Они состоят из корпуса 5 и чугунного бандажа 6. Бандаж соединяют с корпусом клиньями, которые вставляют в пазы между корпусом и бандажом и стягивают болтами. Катки вращаются одновременно вокруг горизонтальной оси и вертикального вала 4. В ступице бандажей катков установлены два подшипника для оси катка.
Рис. 5.2.2.1 - Бегуны мокрого помола СМ-365:
1 - тарель, 2 - вращающаяся течка, 3 - пружинный прижим, 4 - вертикальный вал, 5 - корпус катка, 6 - бандаж, 7 - коленчатый вал, 8 - кожух, 9 - электродвигатель, 10 - уравнительная муфта, 11 - фрикционная муфта, 12 - редуктор, 13 - разгрузочная тарель, 14, 15 - конические шестерни, 16 - чаша, 17 - дырчатая плита, 18 - сплошная плита, 19 - разгрузочный скребок, 20 - станина, 21 - очистительный скребок, 22 - каток.
На ось катка насажен кронштейн со скребком 21 для очистки поверхности катка от глины катки установлены на одинаковом расстоянии от вертикального вала с тем, чтобы перекрывать большую площадь на чаши.
Бегуны снабжены устройством для увлажнения глины, состоящим из водопроводной трубы, зонта резервуара и поливных трубок. Трубки вращаются вместе с вертикальным валом. Зонт с водопроводной трубой, расположенные над резервуаром, остаются неподвижными.
Бегуны приводятся в работу от привода, состоящего из электродвигателя 9, двухступенчатого редуктора 12 и пары конических шестерен 14 и 15. Между двигателем и редуктором установлена фрикционная муфта 11. На шестерне 14 закреплена состоящая из двух полудисков разгрузочная тарель 13 с ограждением и окном для выгрузки глины. У разгрузочного окна над тарелью установлен скребок 19, который прикреплен к кронштейну. Бегуны включают и отключают с помощью рычага [18,19,24].
Масса, обработанная в чаше и продавленная сквозь отверстия в подовых решетках, поступает на разгрузочную тарель и по разгрузочному скребку выходит через разгрузочное окно.
Обработка на бегунах трудно размокаемых глин улучшается, если глину предварительно увлажняют горячей водой или паром в смесителе, установленном перед бегунами. При этом целесообразно стандартные плиты с отверстиями сечением 16X50 мм заменять плитами сечением 10x50 мм, что часто делают при производстве пустотелого кирпича и камней.
На бегунах куски глины под тяжестью катков раздавливаются, а за счет усилий сдвига, образуемого при вращении катков, куски разрываются и растираются.
Обработка массы на бегунах резко повышает связность и однородность массы. Прочность высушенных изделий, изготовленных из обработанной на бегунах массы, повышается на 30-40%, и увеличивается вследствие этого прочность готовых изделий. Количество отходов уменьшается [20,21,35].
Формование кирпича-сырца
Изделия из пластичных масс формуют, выдавливая глиняный брус через профилированные мундштуки шнековых горизонтальных прессов, называемых ленточными. Затем глиняный брус разрезают на отдельные изделия с помощью резательной машины.
Различают безвакуумные и вакуумные ленточные шнековые прессы.
Полнотелый кирпич формуют обычно на безвакуумных прессах, а для производства пустотелого кирпича применяют вакуумные прессы. На кирпичных заводах нашли наибольшее применение ленточные вакуум-прессы [27].
Ленточный вакуумный комбинированный пресс СМ-443А (рис. 5.2.3.1) предназначен для пластического формования кирпича из предварительно подготовленной и вакуумированной глиняной массы влажностью не менее 18%. При формовании изделий осуществляются перемешивание, пароувлажнение, вакуумирование и прессование глиняной массы. Основными узлами пресса являются рама, глиномешалка, вакуум-камера и вакуумная установка, шнековый вал, нагнетательный валок, прессующий цилиндр, приводной вал и привод.
Рис. 5.2.3.1 Ленточный комбинированный вакуумный пресс СМ-443А 1 - коробка привода; 2 система передач; 3 вал; 4 - станина; 5 - смеситель; 6 - верхний шнек; 7 - вакуум-камера; 8 - нижний шнек; 9 - цилиндр; 10 - головка пресса
Перед подачей в вакуум-камеру глиняная масса уплотняется в конусной части смесителя, заполняет его выходную часть, проходит через кольцевое отверстие и разрезается ножами на слои небольшой толщины (10-15 мм). В вакуум-камере происходит дезаэрация (удаление воздуха) массы, которая с помощью питающего валка подается на винтовой шнек пресса, проходит по его корпусу и выталкивается через прессовую головку и мундштук. При формовании обыкновенного кирпича мундштук имеет прямоугольное сечение, а при изготовлении пустотелых камней в мундштуке пресса устанавливают пустотообразующий сердечник, состоящий из скобы, стержней и кернов (насадок), профилирующих отверстия в изделиях (рис. 5.2.3.2) [25,35].
Рис. 5.2.3.2. - Виды мундштуков для ленточного вакуум-пресса: а - для пустотелого кирпича, б - для полнотелого.
Непрерывно
поступающий из пресса брус сырца
разрезается отрезным устройством на
куски требуемой длины (
2,5
м). Отрезанный кусок бруса отделяется
ускорительным транспортёром и подаётся
на разрезное устройство, где он принимается
транспортёром специальной конструкции.
После подачи бруса на разрезное
устройство, транспортёр останавливается,
и находящийся на нём брус, разрезается
на отдельные кирпичи путём опускания
и подъёма разрезного устройства, в
котором поперёк направления подачи
бруса натянуты разрезные элементы
(струны). После окончания операции
разрезки транспортёр разрезного
устройства начинает двигаться и кирпич
сырец перегружается на следующий
транспортёр раздвижного погрузочного
устройства, причём, за счёт плавной
регулировки скорости этого транспортёра
кирпичи могут раздвигаться на требуемое
расстояние. После передачи всех кирпичей
на раздвижной транспортёр, он
останавливается, и находящиеся на нем
кирпичи толкателем сдвигаются в
поперечном направлении на вагонетки,
движущиеся прямо под транспортёром с
такой же скоростью. Концы разрезанного
бруса при этом остаются на раздвижном
транспортере. При подаче следующей
группы разрезанных кирпичей, с разрезного
устройства, на раздвижной транспортёр,
отрезки сырца сбрасываются на транспортёр
отходов и возвращаются в пресс. Таким
образом, кирпичи, группа за группой,
поперечными рядами сажаются на вагонетку
[20].
Сушка кирпича
При пластичном способе формования обжигать сразу кирпич сырец нельзя, так как на данном этапе он имеет очень высокое содержание влаги и при обжиге просто потрескается. Поэтому кирпичи сначала сушат, процесс сушки является обязательным. В это время влага, содержащаяся в изделиях, перемещается из внутренних областей к поверхности, вступает в соприкосновение с теплым воздухом и испаряется. В результате испарения воды освобождается место между частицами глины. Происходит уменьшение объема изделий или усадка. Температура сушки, а также темп роста температуры, играют важную роль в процессе изготовления кирпичей. Влага начинает испаряться при нагреве изделия в диапазоне температур 0-150°C. Когда температура нагрева достигает 70°C, давление водяных паров может достичь критических значений, что в свою очередь приведет к возникновению трещин. Рекомендуемый темп роста температуры 50-80°C в час. При этом скорость испарения влаги с поверхности, не будет опережать скорость парообразования внутри изделия. После завершения сушки кирпичи отправляются на обжиг в специальные печи [28,29].
Туннельная сушилка непрерывного действия представляет собой камеру длиной 24-36 м, высотой 1,4-1,8 м, шириной 1 -1,2 м (рис. 5.3.1).
Рис. 5.3.1 - Конструкция туннельной сушилки:
- рельсовые пути; 2 - канал для подачи теплоносители; 3 - вагонетка; 4 - канал для отвода теплоносителя.
Сырец поступает в сушилку на вагонетках, которые перемещаются в туннелях по рельсовым путям с помощью передвижных или канатных толкателей. Отдельные туннели объединяют в блоки по 4-20 туннелей, имеющих общие каналы для подачи и забора теплоносителя. Основные преимущества туннельных сушилок: поточность производства, высокий уровень механизации, высокая производительность труда. К недостаткам туннельных сушилок относятся: большое количество вагонеток и необходимость их пополнения, подверженность металлических изделий вагонеток коррозии, неравномерность сушки изделий по поперечному сечению туннеля (вверху температура теплоносителя выше, чем внизу) и необходимость круглосуточной загрузки и разгрузки вагонеток.
Параметры режима сушки кирпича в туннельных сушилках: срок сушки 12-50 ч, температура теплоносителя 50-80 °С, температура отработанных газов 25-40 °С, относительная влажность 75-95%, расход теплоносителя на один туннель 3000-10 000 м3/ч, скорость движения теплоносителя в туннеле 0,8-2 м/с. Начальная влажность массы 18-25%, конечная - 5-7%. Использование отработанного теплоносителя (до 70-80%) Для сушки позволяет повысить влагосодержание свежего теплоносителя, смягчить режим сушки и сократить его срок [25,26].
Обжиг кирпича
Завершающей стадией технологии всех изделий строительной керамики является их обжиг. При обжиге изделия окончательно формируется структура материала, т.е. происходит спекание керамики, в результате чего сырец из конгломерата слабосвязанных частиц превращается в достаточно твердое и прочное тело.
При обжиге изделий в печах одновременно протекает ряд сложных процессов: горение и газификация топлива, движение продуктов горения в рабочем пространстве печи, теплообменные и массообменные процессы, связанные с экзотермическими и эндотермическими эффектами в обжигаемых изделиях изменения в добавках, вводимых в массу, и др. [22].
Формирование черепка изделий при обжиге достигается оптимальным выбором температуры и времени нагрева полуфабриката (температурного режима), а также химическим составом печной атмосферы (газовым режимом) и временем обжига. Температурный режим обжига изделий условно разделяют на четыре периода: досушки, подогрева, взвара, охлаждения.
Досушка производится с целью полного удаления воды затворения и гигроскопической, а также равномерного прогрева массы полуфабриката до 100-2000С. Наиболее интенсивно удаляется вода при 80-1300 С. Удаление адсорбционно связанной воды (120-1300С) сопровождается первым эндотермическим эффектом (поглощение тепла), что связано с возможностью растрескивания сырца. Температура в период досушки поднимается медленно при наличии достаточной тяги, предотвращающей возможность конденсации паров на сырце [23,26].
Подогрев до 800 0С, т.е. до начала упругих деформаций, первоначально производится дымовыми газами и далее при сжигании топлива. В начальной стадии этого периода (3000 С) начинается выгорание органических примесей, заканчивающееся при медленном подъеме температуры до 4500С, при быстром подъеме - около 700 - 8000 С.
Выгорание органических веществ протекает в два этапа. В начале происходит выделение и сгорание летучих веществ (350-4000С). Коксовый остаток выгорает к концу второго периода (700-8000 С). Скорость выгорания веществ обратно пропорциональна квадрату толщины изделия и во многом зависит от избытка воздуха в печных газах.
В середине периода при температуре 500-6000 С происходит интенсивное выделение конституционной воды, сопровождающееся вторым эндотермическим эффектом, который заканчивается при скоростном обжиге, когда температура достигает 900-10000 С. В этом же температурном интервале происходит диссоциация минералов, содержащих железа, например сидерита FeCO3 с выделением СО2. В восстановительной среде, создаваемой сжиганием топлива внутри черепка при вводе топлива в массу или при водяном орошении, часть окиси железа восстанавливается в закись с образованием легкоплавких эвтектик (железистых стекол), особенно при поднятии температуры до 850 - 9000С, способствующих уплотнению черепка [23,27].
При температуре 550 0С и наличии восстановительной среды начинается диссоциация сульфидов и сульфатов с выделением SO2, а при 700-8000 С - диссоциация карбонатов СаСО3 и МgCO3, заканчивающаяся при 950-1000 0 С с выделением углекислого газа и повышением пористости изделий.
Начиная с 7000 С и выше, щелочи, находящиеся в глине, вступают во взаимодействие с другими компонентами глины, образуют расплав, количество которого также возрастает с повышением температуры.
В процессе формирования черепка жидкая фаза (расплав) непрерывно меняется. Количество расплава, образующегося при одной и той же температуре зависит от химического состава глинистых материалов и добавок, реакционной способности и дисперсности компонентов массы, качества печной, среды и продолжительности нагрева.
При малом содержании жидкой фазы достаточная механическая прочность изделий не обеспечивается, при излишнем возможна деформация изделий в процессе обжига. В этом периоде обжига изделий (700-8000 С) кристаллическая решетка глинообразующих минералов не разрушается, поэтому такие физико-механические показатели, как усадка, прочность, пластические деформации, модуль упругости, изменяются незначительно. Пористость изделий к концу периода увеличивается. Этот период нагрева не является опасным для быстрого подъема температур, даже для глин, чувствительных к обжигу [26].
Скорость подъема температуры определяется в основном не свойствами сырья, обжигаемых изделий, а конструктивными особенностями печей, и в некоторые периоды может колебаться от 150 до 800 град/ч, а в среднем - около 300 град/ч.
Взвар характеризуется достижением максимально допустимой температуры обжига изделий, созреванием черепка и выдержкой, осуществляемой обычно при температуре 900-10500 С. Поднимают температуру осторожно, так как при 800-9000 С возникают упругие деформации, что связано с разрушением кристаллической решетки глинистых минералов и значительными структурными изменениями черепка.
Физико-химические превращения, начинающиеся в этом периоде и протекающие более интенсивно при дальнейшем повышении температуры, оценивают по-разному.
Так, при нагревании, например, каолинита последний распадается на свободные окислы с образованием т-глинозема и кремнезема, далее образуется силлиманит А12О3*SiО2 и Si02 и соединение метастабильной структуры типа метакаолинита А12О3*2Si02, имеющего скрытокристаллическое, почти аморфное строение, а затем муллит 3Аl2О3*2SiО2 при 9000 С и другие соединения. Процессы образования новых соединений сложны, протекание их связано с образованием промежуточных соединений, наличием расплава, условиями нагрева и др.
Муллит является наиболее устойчивым соединением, придающим изделиям прочность, термостойкость, ударную вязкость и другие ценные свойства. В кирпиче и керамических камнях процесс образования муллита протекает только в начальной стадии и в ограниченном количестве из-за недостаточных температур (необходимы 1150-12500С).
Период взвара характеризуется изменением огневой усадки начинающейся при температуре 750-8500С, в зависимости от свойств сырья, и заканчивающейся к моменту достижения конечной температуры обжига. Вязкость массы изделий и пористость при 900-9500С резко снижаются, в особенности у сырца или сырья, богатого карбонатами. Диссоциация карбонатом к этому времени почти полностью заканчивается. Окислы щелочных и щелочноземельных металлов, делая глину легкоплавкой, способствуют быстрому размягчению ее за счет увеличения количества расплава и тем самым резко уменьшают пористость массы изделий. Материал изделий переходит в пиропластическое состояние. Железосодержащие минералы наряду со щелочами являются наиболее легкоплавкими составляющими, особенно закись железа FeO, так как плавится она при температуре на 150-2000С ниже, чем Fe2O3. Поскольку в глинах железо чаще всего встречается в виде окиси (Fe2O3), переход ее в закись возможен только в восстановительной среде, получаемой при сгорании топлива, запрессованного в изделия, или при вводе воды в печь на конечной стадии обжига. Поэтому обжиг изделий в восстановительной среде при температуре 900-1000 0С равносилен обжигу в обычной (окислительной) среде при 1050-1100 0С без риска деформации изделий [29,30].
Для выравнивания температуры в печи и более полного протекания физико-химических процессов в конце взвара производится выдержка 3-5 ч.
Краткосрочная выдepжкa также способствует интенсивному протеканию превращений кремнезема, образованию муллита, хотя завершение этих процессов переносится в область более высоких температур, чем температуры обжига изделий. Поэтому нарастание прочности черепка изделий, начинающееся при температуре 800-8500С и продолжающееся до конца обжига (900-10500С), объясняется не столько влиянием вновь образующихся соединений (из-за недостаточных для их образования температур и времени), сколько действием расплава, который, благодаря энергии поверхностного натяжения, сближает и связывает более крупные частицы массы, - дегидратированные частицы глинистого вещества и зерна кварца. Прочность охлажденного расплава (стекловидной фазы) достигает 490- 588 Мн/м2 (5000-6000 кг/см2).
В изделиях пластического формования глинистые частицы более равномерно распределяются в массе заполнителя (кварцевые зерна, шамот и др.), обволакивая его зерна. При обжиге образующаяся на поверхности зерен заполнителя жидкая фаза цементирует их [28].
Проникая в трещины и поры, расплав еще больше увеличивает прочность связи. При полусухом прессовании зерна заполнителя как бы вдавливаются в глинистые частицы и при обжиге частицы связываются только в местах контактов, что не обеспечивает высокой прочности и только частично компенсируется повышением температуры обжига.
Охлаждение начинается небольшой зоной "закала" и характеризуется медленным пониженном температуры (около 300 0С в час) до 550-5000С без отбора тепла для избежания внутренних напряжений и растрескивания изделий. Появление трещин, скорее всего, возможно в интервале температур 600-4000С в результате полиморфных превращений кварца (при 5730С) и перехода расплава из вязкого в твердое состояние. Поэтому при использовании в качестве отощающей добавки крупнозернистого кварцевого песка (размером 0,8-1,2 мм) скорость охлаждения должна уменьшаться на 15-20% по сравнению со скоростью охлаждения при использовании мелкозернистого песка.
Дальнейшее охлаждение до конечной температуры 40-500 С происходит быстро, и допускаемая величина температурного перепада возрастает до 120-125 град в час. Количество воздуха, необходимое для полного охлаждения изделий, составляет в среднем 6500-7500 кг на 1000 шт. условного кирпича. При этом в зоне взвара коэффициент избытка воздуха будет около 3,5-4,5 и отсасывающий вентилятор должен удалять из печи около 22000-30000 кг газа на 1000 шт. обжигаемого условного кирпича [30,32].
Продолжительность обжига изделий зависит от материала обжигаемых изделий и его физических свойств (теплопроводности, плотности, механической прочности и др.), температуры обжига, скорости изменения температуры, типа и плотности садки, вида обжигаемых изделий (размера, формы, сложности), типа и состояния печи, условий сжигания топлива, теплоотдачи движения газов в рабочем канале печи.
Обжигают керамический кирпич в кольцевых, камерных, туннельных, щелевых, роликовых и других печах. Туннельные печи имеют значительные преимущества перед печами периодического действия и кольцевыми печами. Садка кирпича-сырца на вагонетки туннельных печей и выгрузка обожженного кирпича с этих вагонеток производится вне печи, в нормальных температурных условиях, что значительно облегчает труд обслуживающего персонала и дает возможность механизировать трудоемкие процессы садки и выгрузки кирпича. В туннельных печах можно осуществить полную автоматизацию управления режимом обжига. К достоинствам туннельных печей относится и то, что у них температурный перепад в различных участках обжига незначителен. Однако туннельные печи имеют и ряд недостатков, например, большим перепадом температур по высоте, достигающим в зоне подогрева 4200С, который на участке максимальных температур уменьшается до 20-400С. Борьба с этим перепадом осуществляется главным образом путем рециркуляционных потоков газов ("завес"), нагнетаемых вентиляторами, как в зоне подогрева, так и в зоне охлаждения на нескольких позициях по длине печного канала. Борьба эта не всегда успешна. Второй недостаток - трудности настройки аэродинамического режима. На основании приведенных достоинств и недостатков в качестве печи для обжига кирпича выбрана туннельная печь [20,24].
Туннельные печи представляют собой непрерывно действующие установки, в которых по специальному туннелю навстречу продуктам горения движутся вагонетки с обжигаемыми на них изделиями. Основным видом топлива для туннельных печей является природный газ. В ряде случаев используется жидкое и твердое низкосортное топливо, сжигаемое в выносных топках.
Принцип работы туннельных печей заключается в том, что по мере продвижения по туннелю печи материалы, погруженные на вагонетки, вначале подогреваются (в зоне подогрева) за счет отходящих продуктов горения и нагретого воздуха, поступающего в зону подогрева из зоны охлаждения, затем обжигаются (в зоне обжига) и охлаждаются (в зоне охлаждения). В туннельной печи зона обжига неподвижна, а обжигаемый материал перемещается на вагонетках, ленточных или роликовых конвейерах по сквозному туннелю навстречу теплоносителю. Длина обжигательного канала 48-408, ширина 1,7-4,7, рабочая высота 1,3-1,9 м
В туннельных печах регулируется подача топлива, воздуха для горения и охлаждения продукции, а также и количество продуктов горения и нагретого воздуха. Это осуществляется за счет установки раздельно работающих вентиляторов, дымососов и рециркуляции дымовых газов и воздуха по рециркуляционным каналам, располагаемым вдоль печи над сводом, по которым дымовые газы и воздух могут быть поданы в соответствующие зоны печи. Так, по системе рециркуляционных каналов отсасываемый воздух из одних участков зоны охлаждения подается в другие участки этой же зоны, продукты горения и воздух из зоны подогрева можно подавать в зону обжига и т.д. Регулирование распределения продуктов горения и воздуха позволяет применять широкую автоматизацию процессов подогрева, обжига и охлаждения изделий, обеспечивающую получение наилучших технико-экономических показателей работы этих видов печей. Размеры туннелей зависят от вида топлива, назначения и производительности туннельных печей [33].
Туннельная печь (рис. 5.4.1) имеет три зоны: подогрева, обжига и охлаждения.
В зоне подогрева температура повышается со скоростью 50°С/ч до 100°С, затем со скоростью 150°С/ч до 750-800 °С. Затем скорость нагрева несколько снижается и повышается снова в зоне обжига. Охлаждение после обжига медленное за счет теплопотерь в окружающую среду, а с 500 до 50°С скорость охлаждения повышается до 120°С/ч. Большая часть производственного времени (60-65%) при обжиге отводится зонам подогрева и охлаждения, так как в этих зонах возможно появление наибольшего количества дефектов.
Рис. 5.4.1 Туннельная печь
а - зона подогрева; б - зона взвара (1 - кладка печи; 2 - воздухопровод; 3 - газопровод); в - схема тепловых зон.
Режим обжига в туннельных печах назначают в зависимости от вида, формы, размеров обжигаемых изделий и вида теплоносителя.
Интенсивность и качество обжига также зависят от вида садки кирпича-сырца на вагонетки, который выбирают в соответствии с типом изделий, уровнем механизации погрузочно-разгрузочных работ, видом топлива, методом его сжигания, размером обжигательного канала. Садка сырца прямая плотностью 200-280 шт. на 1 м3 объема канала печи. Должна быть прочной и устойчивой, не препятствовать равномерному прогреву всего сырца (рис. 5.4.2) [34].
Рис. 5.4.2 - Садка кирпича на вагонетку при обжиге кирпича природным газом
Вагонетки туннельных печей двухосные (рис. 5.4.3). Рама вагонетки состоит из жесткого металлического каркаса, на который кладется огнеупорная футеровка, служащая одновременно и основанием для размещения на ней обжигаемой продукции и подиной рабочего пространства туннеля. Футеровка вагонеток выполняется из различных огнеупорных материалов: шамотных фасонных изделий, нормального шамотного кирпича, жаростойкого бетона в различных комбинациях. В торцах футеровки вагонеток устраивают специальные выступы и впадины для создания надежного уплотнения между ними.
Рис. 5.4.3 - Расположение вагонетки в туннельной печи: 1 - печь, 2 - вагонетка
Топливосжигающие устройства в печи располагаются в обеих стенах зоны обжига. Продукты горения из зоны обжига направляются в зону подогрева и из нее через боров и дымовую трубу в атмосферу или с помощью дымососа в сушильные камеры. Холодный воздух в зону охлаждения подается вентилятором. Воздух, нагретый за счет тепла остывающей продукции, частично поступает в зону обжига (вторичный воздух), а частично через окна в стенах печей и вертикальные каналы в межсводовый канал и через него в зону подогрева. Излишки воздуха с помощью дымососов поступают в сушильные камеры [34,35].
Кирпич снимается с вагонеток, устанавливается на поддоны, упаковывается в транспортные пакеты и транспортируется с помощью автопогрузчика. На кирпичных заводах применяются автопогрузчики самых различных типов со щитовыми захватами и с зажимами. Вилочные зажимы работают от гидравлической системы либо приводятся в действие от веса поднимаемого пакета.
После чего кирпич отправляется на склад готовой продукции, находящийся на открытых асфальтированных площадках, расположенных на территории предприятия. Склад готовой продукции оборудован мостовыми кранами для загрузки поддонов с кирпичом в автомобили [25].
Брак, образующийся в производстве
Брак и его причины при формовании
При формовании кирпича вследствие недостаточной переработки глины в изломе сырца могут быть включения непроработанной глины. Возможны также нарушения углов бруса, расслоение его массы, появление структурных трещин S-образных или эллипсовидных, растрескивание бруса и размывы поверхности его. Нарушение углов бруса указывает на неудовлетворительное орошение мундштука, его износ или засорение, использование очень тощих глин (рис. 5.5.1.1).
Рис.5.5.1.1 - Виды брака кирпича: а) "драконов зуб", б) свилеобразная структура, в) S-образная трещина, г) брус с незаполненными углами, д) опережение середины бруса, е) отставание середины бруса.
Расслоение массы и образование структурных трещин являются результатом неправильного режима формования и несоблюдения необходимых параметров массы (наслаивание "заполированных" элементов массы шнековым нагнетателем, пульсация массы при ее нагнетании в формующую часть пресса, трение массы о стенки пресса, увеличение давления на массу в головке пресса и т. д.). При излишнем орошении мундштука возможны размывы на поверхности бруса [36].
Для предотвращения свилеобразования глину отощают, что увеличивает коэффициент внутреннего трения и снижает склонность массы к расслоению; увеличивают влажность массы, повышающую ее сцепляемость; уменьшают внешнее трение за счет введения в массу поверхностно-активных веществ и орошения головки пресса водой; удлиняют головку пресса, вставляя между цилиндром и головкой кольцо длиной 100-200 мм, что способствует большему уплотнению массы; устанавливают зазор между корпусом пресса и лопастями шнека в пределах 2-3 мм; снижают частоту вращения шнека (не более 32 об/мин), что позволяет снизить прессовое давление; используют рыхлительные ножи в головке пресса, исключающие "заполированность" и увеличивающие сцепление поверхностей отдельных слоев [31].
Брак и его причины при сушке
Сушка необходима для придания сырцу механической прочности и подготовки его к обжигу.
В процессе сушки происходит удаление влаги из материала, сопровождающееся уменьшением объема (усадкой) и увеличением его прочности. При сушке удаляется 65-70% воды, находящейся в формовочной массе.
Во избежание неравномерной усадки и растрескивания кирпичи перед обжигом должны иметь влажность не более 5. Процесс сушки изделий характеризуется изменением скорости и времени сушки, температуры, влагосодержания, возникновением усадочных напряжений в изделии.
Испарение влаги с поверхности свежеотформованного изделия (внешняя диффузия) зависит от температуры, скорости перемещения и влажности теплоносителя. Оно тем больше, чем выше температура и скорость, и ниже влажность теплоносителя. Таким образом, величину внешней диффузии можно регулировать. Процесс перемещения влаги из глубинных слоев изделий к поверхности называют внутренней диффузией. Она протекает значительно медленнее внешней и зависит в основном от влагопроводности материала, определяемой пористостью, градиента влажности, перепадов температуры и давления. С увеличением пористости и температуры сырца ускоряется внутренняя диффузия, уменьшается разница между внутренней диффузией и внешней, равномернее осуществляется сушка изделий. Предельно допустимый перепад влажности на поверхности и внутри сырца, при котором происходит равномерная сушка, называется критическим градиентом влажности. Внутреннюю диффузию регулируют введением в массу отощающих и выгорающих добавок, электролитов, содержащих катионы Са2+, Al3+ и др., количеством воды, условиями формования, прогревом и вакуумированием массы. Изменение влагосодержания сырца вызывает его воздушную усадку, величина которой в большой степени зависит от свойств глинистого сырья и определяет чувствительность глин к сушке. Чем выше пластичность глин, тем выше усадка и тем труднее избежать деформации изделий при сушке. Снизить усадку глин при сушке можно введением различных добавок (отощающих, выгорающих, электролитов и др.), влияющих на изменение условий внутренней и внешней диффузии влаги, а также вакуумированием массы [23,27].
Брак и его причины при обжиге керамического кирпича
Недожженный кирпич - или прокопченный как его еще могут называть. Это кирпич, который имеет более бледный цвет, отличающий его от остальных (рис. 5.5.3.1, а). Еще одной характерной чертой недожженного кирпича есть глухой звук при ударе, тогда как качественный кирпич при ударе звенит. Такой кирпич недолговечен, имеет низкую морозостойкость и естественно очень быстро впитывает влагу. Такой брак получается не только в результате недостаточной температуры, но и когда в печь попадает "сырой", не полностью высушенный кирпич.
Рис. 5.5.3.1 - Брак кирпича при обжиге: а) недожженный кирпич, б)пережженный кирпич.
Пережженный кирпич - или перепал, также является браком. Название кирпича говорит само за себя, его пережгли при высоких температурах (рис. 5.5.3.1,б). Как правило, он имеет черный цвет и плохую геометрию, так как от высокой температуры он может оплавляться или его может "распирать" изнутри. Такой кирпич имеет очень маленький коэффициент теплопроводности, что плохо для жилых помещений, но и ему можно найти применение. Например, он пригоден для обустройства канализаций, так как приобретает свойства камня железняка и не подвержен влиянию агрессивной окружающей среды [28,30].
