Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OMM_shpori (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.07 Mб
Скачать

27. Теорема Куна–Таккера

Теорема Куна–Таккера дає змогу встановити типи задач, для яких на множині допустимих розв’язків існує лише один глобальний екстремум зумовленого типу. Вона тісно пов’язана з необхідними та достатніми умовами існування сідлової точки.

Розглянемо задачу нелінійного програмування, яку, не зменшуючи загальності, подамо у вигляді:

, (7.18)

, (7.19)

. (7.20)

(Очевидно, що знак нерівності можна змінити на протилежний множенням лівої і правої частин обмеження на (– 1)).

Теорема 7.1. (Теорема Куна–Таккера). Вектор Х* є оптимальним розв’язком задачі (7.18)–(7.20) тоді і тільки тоді, коли існує такий вектор , що при для всіх точка є сідловою точкою функції Лагранжа

,

і функція мети для всіх угнута, а функції – опуклі.

Умови теореми Куна – Таккера виконуються лише для задач, що містять опуклі функції. Функція , що задана на опуклій множині , називається опуклою, якщо для будь-яких двох точок та з множини X і будь-яких значень виконується співвідношення:

. (7.21)

Якщо нерівність строга і виконується для , то функція називається строго опуклою.

Функція , яка задана на опуклій множині , називається угнутою, якщо для будь-яких двох точок та з множини X і будь-якого справджується співвідношення:

. (7.22)

Якщо нерівність строга і виконується для , то функція називається строго угнутою.

Теорема 7.2. Нехай – опукла функція, що задана на замкненій опуклій множині X, тоді будь-який локальний мінімум на цій множині є і глобальним.

Теорема 7.3. Нехай – опукла функція, що визначена на опуклій множині Х, і крім того, вона неперервна разом з частинними похідними першого порядку в усіх внутрішніх точках Х. Нехай – точка, в якій . Тоді в точці досягається локальний мінімум, що збігається з глобальним.

28. Опукле програмування

Опукле програмування розглядає методи розв’язування задач нелінійного програмування, математичні моделі яких містять опуклі або угнуті функції.

Загальний вигляд задачі опуклого програмування такий:

, (7.23)

, ; (7.24)

, (7.25)

де , – угнуті функції.

Аналогічний вигляд має задача для опуклих функцій.

Позначимо: , тоді , і маємо:

, (7.26)

; (7.27)

, (7.28)

де , – опуклі функції.

Оскільки ці задачі еквівалентні, то нижче розглянемо задачу (7.23)–(7.25). Функція Лагранжа для задачі (7.23)–(7.25) має вид:

(7.29)

де – множники Лагранжа.

Використовуючи теорему Куна-Таккера, маємо необхідні та достатні умови існування оптимального плану задачі опуклого програмування.

Теорема 7.4. Якщо задано задачу нелінійного програмування виду (7.23)–(7.25), де функції диференційовні і вгнуті по Х, то для того, щоб вектор був розв’язком цієї задачі, необхідно і достатньо, щоб існував такий вектор , що пара ( , ) була б сідловою точкою функції Лагранжа, тобто щоб виконувалися умови:

(І)  , ; (7.30)

(ІІ)  , ; (7.31)

(ІІІ)  , ; (7.32)

(IV)  , . (7.33)

Для задачі мінімізації (7.34)–(7.36), де всі функції диференційовні і опуклі по Х, маємо умови, аналогічні вищенаведеним, але зі знаком «≥» в нерівностях (7.30) та (7.32).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]