Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дайн сра - жауаптар телефон.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
4.27 Mб
Скачать

3.Туындыны табыңыз:

24-сұрақ

  1. Математикалық ұғымдар, сөйлемдер және оларды үйренудің әдістемесі. ксиомалар, теоремалар, дәлелдеу, аксиоматикалық әдістер. Математикалық ұғымдарды нақты-индуктивтік және абстракты-дедуктивтік әдіспен ендіру әдістемесі.

«Ұғым»  термині біздің санамызда кейбір нысандарды, шындықтың қатынастары мен процестерді, кейбір заттар сыйпатының бейнесін белгілеу үшін қолданылады.

Математикалық ұғым біздің ойымызда белгілі формада нақты жағдайдан абстракцияланған шындыққа көшуді бейнелейді. Бір зат екінші заттан әр түрлі сапалары мен белгілері, немесе ерекшеліктері арқылы ажыратылады. Әр түрлі нысандардан: жеке қасиеттерді, жалпы қасиеттерді бөліп аламыз. Нысандар қасиеттерінің адам миында ерекше бейнелену процесін – ұғым деп атайды: ұғым жоғары дәрежеде ұйымдасқан материяның жемісі; ұғым материалды дүниені бейнелейді; ұғым – жалпылау, таным тәсілі ретінде қолданылады; ұғым адам қызметінің әрқилылығын білдіреді; адам санасына ұғымның қалыптасуы оның тікелей сөз, жазу не символ арқылы өрнектелуінен қалыптаспайды, әрбір ұғым өзіне нысандар белгілерін біріктіреді (заттардың қатынасы). Ұғым көлемі – осы белгілерге жататын барлық нысандарды білдіреді, ал нысандардың сипаттамалық қасиеті осы ұғымның мазмұны болады. Ұғымды тұжырымдау сұлбасын еске түсірелік: қабылдау – сезіну – түсінік – ұғым. Абстракты-дедукциялық әдіспен оқытудың негізгі кезеңдері:

- алдымен жаңа ұғымға анықтама беріледі, бұл үшін оны белгілеуші термин тұжырымдалады;

- ұғым ендірілген өрнектің жеке және ерекше жағдайлары қарастырылады; қарама-қарсы пікірлерден мысал келтіріледі;

- келесі кезекте ендірілген ұғым нақты мысалдар арқылы иллюстрацияланады;

- соңында ендірілген ұғымды бекіту үшін мысалдар келтіріледі. Жаңа ұғымның меңгерілуі. Егер ұғым меңгерілген болса, онда: - оқушының ұғымның көлемі мен мазмұны туралы толық түсінігі болады; - оқушы математикалық іс-әрекеттің барысында ұғымды қолдана біледі; - оқушы жаңа жағдайларда өзінің білімі мен тәжірибесін қолданады.

Математикалық сөйлем – математикалық нысандар жөніндегі пайымды (немесе пікірді) өрнектейтін логикалық сөйлем. Математикалық сөйлемдерге: теорема, аксиома, постулат, анықтама, формулалар, теңдеулер мен теңсіздіктер, есептер т.б. жатады.

Аксиома деп ешбір дәлелдеусіз қабылданатын сөйлемді айтады.Аксиомалар жүйесіне мынадай талаптар қойылады:1. Аксиомалар жүйесі қайшылықсыз болуы тиіс. Мұның мәні жүйедегі аксиомалар мен сол аксиомалардың барлық логикалық салдары бірін–бірі

теріске шығармауы керек.2. Аксиомалар жүйесі тәуелсіз болуы тиіс. Мұның мәні: жүйедегі кез-

келген аксиома басқаларынан шықпауы керек. 3. Аксиомалар жүйесі толық болуы тиіс. Мұның мәні: жүйедегі

аксиомалар теорияның негізін қалау үшін жеткілікті болуы керек.

Постулат дегеніміз – белгілі бір ұғым немесе ұғымдардың арасындағы белгілі бір қатынас қанағаттандыруға тиісті талаптарды сипаттайтын математикалық сөйлем. Ақиқаттығы тікелей дәлелдеу (талқылау) арқылы көз жеткізілетін математикалық сөйлем теорема деп аталады.

Индуктивтік әдіспен ұғымды ендірудегі оқыту процесінің негізгі кезеңдері: берілген ұғымның қажеттігін көрсететін (қабылдау – сезіну) практикалық мысалдар келтіру; берілген ұғымның маңызды және өте маңызды емес белгілерін анықтайды (оқушылар) және берілген ұғымды белгілейтін термин ендіреді (мұғалім).

Абстракты-дедукциялық әдіспен оқытудың негізгі кезеңдері:

- алдымен жаңа ұғымға анықтама беріледі, бұл үшін оны белгілеуші термин тұжырымдалады;

- ұғым ендірілген өрнектің жеке және ерекше жағдайлары қарастырылады; қарама-қарсы пікірлерден мысал келтіріледі;

- келесі кезекте ендірілген ұғым нақты мысалдар арқылы иллюстрацияланады;

- соңында ендірілген ұғымды бекіту үшін мысалдар келтіріледі. Жаңа ұғымның меңгерілуі. Егер ұғым меңгерілген болса, онда: - оқушының ұғымның көлемі мен мазмұны туралы толық түсінігі болады; - оқушы математикалық іс-әрекеттің барысында ұғымды қолдана біледі; - оқушы жаңа жағдайларда өзінің білімі мен тәжірибесін қолданады.