
- •Ос в общей структуре компьютера.
- •История операционных систем.
- •Классификация современных ос. Задачи современных ос.
- •6. Понятие процесса – ключевое понятие ос.
- •8. Трансляторы: компиляторы и интерпретаторы.
- •9. Иерархия зу (запоминающих устройств).
- •10. Управление оперативной памятью (оп). Менеджер памяти; swapping; виртуальная память.
- •11. Модели организации виртуальной памяти.
- •12. История ос unix.
- •13. Общая архитектура unix. Основные подсистемы ядра.
- •14. Пользовательская среда unix.
- •Командный интерпретатор shell.
- •16. Система каталогов в oс unix. Управление с помощью команд языка Bourn shell.
- •17. Управление файлами с помощью команд языка Bourn shell. Перенаправление ввода/вывода.
- •19. Обработка аргументов командной строки. Переменные окружения.
- •20. Пользователь и группа. Права доступа к файлу.
- •21. Системные вызовы и функции стандартных библиотек. Обработка ошибок.
- •22.Структура программы на языке с. Параметры главной функции (пример).
- •23. Файловая система ос unix: монтирование, индексные дескрипторы, жесткие и символические ссылки, файлы устройств.
- •24.Системные вызовы для работы с файлами
- •25. Понятие «процесс» в ос unix. Контекст процесса; свойства процесса; состояние процесса.
- •26.Создание процессов и упр-е ими.
- •27. Запуск внешней программы
- •29.Общая классификация средств взаимодействия процессов в ос unix.
- •30.Иерархия процессов в ос unix. Понятие сеанса. Фоновые процессы.
- •31.Каналы – средства взаимодействия процессов. Неименованные каналы. Организация конвейера (пример программы).
- •33.Сигналы как средство взаимодействия процессов в ос unix. Диспозиция сигналов.
- •34.Ограничения для процесса в ос unix (по ресурсам). Связь со свойствами процесса.
- •36.Отображение файлов в виртуальное адресное пространство. Разделяемая память.
- •37. Взаимодействие процессов через псевдотерминал.
- •38. Недостатки потокового взаимодействия процессов. Средства System vipc. Пространство имен. Общие принципы работы со средствами System vipc.
- •39. Организация очереди сообщений в ос unix. Структура сообщения. Отправка и принятие сообщений.
- •40.Семафоры, как средство взаимодействия процессов System vipc. Понятие атомарной операции. Массив семафоров.
- •41.Разделяемая память, как средство взаимодействия процессов System vipc.
- •42.Взаимодействие по сети. Понятие протокола. Семейства адресации и типы взаимодействия. Создание сокета в ос unix.
- •45. Потоковые сокеты. Клиент – серверная модель.
- •46. Проблема очередности действий и ее решение.
- •47. Процессы-демоны. Система журнализации.
- •48. Загрузка и жизненный цикл в ос unix.
- •49. Взаимоисключения. Понятие критической секции. Устаревшие подходы к организации взаимного исключения.
- •50.Поддержка взаимоисключения на уровне ос. Мьютексы и семафоры (Дейкстры). Команда ассемблера tsl.
- •51.Проблема тупиков. Граф ожидания
- •52. Нити исполнения (pthreads) в ос unix. Мьютексы pthreads.
- •53.Графический интерфейс в ос unix. Базовые принципы построения x_window.
- •54.Файловая подсистема. Общая структура. Методы выделения дискового пространства. Управление дисковым пространством.
- •55.Файловая подсистема. Структура файловой системы на диске. Реализация директорий. Поиск в директории (хеширование).
- •56.Подсистема ввода/вывода. Схема взаимодействия подсистем ос. Понятие драйвера. Типы драйверов.
41.Разделяемая память, как средство взаимодействия процессов System vipc.
Интенсивный обмен данными между процессами с использованием рассмотренных механизмов межпроцессного взаимодействия (каналы, FIFO, очереди сообщений) может вызвать падение производительности системы. Это, в первую очередь, связано с тем, что данные, передаваемые с помощью этих объектов, копируются из буфера передающего процесса в буфер ядра и затем в буфер принимающего процесса. Механизм разделяемой памяти позволяет избавиться от накладных расходов передачи данных через
ядро, предоставляя двум или более процессам возможность непосредственного получения доступа к одной области памяти для обмена данными. Безусловно, процессы должны предварительно "договориться" о правилах использования разделяемой памяти. Например, пока один из процессов производит запись данных в разделяемую память, другие процессы должны воздержаться от работы с ней. К счастью, задача кооперативного использования разделяемой памяти, заключающаяся в синхронизации выполнения процессов, легко решается с помощью семафоров.
Примерный сценарий работы с разделяемой памятью выглядит следующим образом:
1. Сервер получает доступ к разделяемой памяти, используя семафор.
2. Сервер производит запись данных в разделяемую память.
3. После завершения записи сервер освобождает разделяемую память с помощью семафора.
4. Клиент получает доступ к разделяемой памяти, запирая ресурс с помощью семафора.
5. Клиент производит чтение данных из разделяемой памяти и освобождает ее, используя семафор.
Для создания или для доступа к уже существующей разделяемой памяти используется системный вызов shmget:
#include <machine/param.h>
int shmget(key_t key, int size, int flag) ;
Функция возвращает дескриптор разделяемой памяти в случае успеха, и -1 в случае неудачи. Аргумент size определяет размер создаваемой области памяти в байтах. Значения аргумента flag задают права доступа к объекту и специальные флаги IPC__CREAT и IPC_EXCL. Заметим, что вызов shmget лишь создает или обеспечивает доступ к разделяемой памяти, но не позволяет работать с ней. Для работы с разделяемой памятью (чтение и запись) необходимо сначала присоединить (attach) область вызовом shmat:
#include <sys/types.h >
#include <sys/ipc.h>
#include <sys/shm.h>
void *shmat(int shmid, void *addr , int flag) ;
Вызов shmat возвращает адрес начала области в адресном пространстве процесса размером size , заданным предшествующем вызовом shmget. В этом адресном пространстве взаимодействующие процессы могут размещать требуемые структуры данных для обмена информацией. Правила получения этого адреса следующие:
1. Если аргумент addr нулевой, то система самостоятельно выбирает адрес.
2. Если аргумент addr отличен от нуля, значение возвращаемого адреса зависит от наличия флажка SHM_RND в аргументе flag:
Если флажок SHM_RND не установлен, система присоединяет разделяемую память к указанному addr адресу.
Если флажок SHM_RND установлен, система присоединяет разделяемую память к адресу, полученному округлением в меньшую сторону addr до начала страницы, т.о. несколько процессов могут отображать область памяти в область собственного адресного рпостранства.
По умолчанию разделяемая память присоединяется с правами на чтение и
запись. Эти права можно изменить, указав флажок SHM_RDONLY в аргументе flag.
Окончив работу с разделяемой памятью, процесс отключает (detach) область вызовом shmdt:
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmdt(void *addr);
При работе с разделяемой памятью необходимо синхронизировать выполнение взаимодействующих процессов: когда один из процессов записывает данные в разделяемую память, остальные процессы ожидают завершения операции. Обычно синхронизация обеспечивается с помощью семафоров, назначение и число которых определяется конкретным использованием разделяемой памяти.