Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции, часть 1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.8 Mб
Скачать

2.1..3 Модели авторегрессии и скользящего среднего

Модель авторегрессии является исключительно полезной стохастической моделью для описания некоторых встречающихся на практике рядов. В этой модели текущее значение процесса выражается как конечная линейная сово­купность предыдущих значений процесса и импульса . Обозначим значения процесса в равноотстоящие моменты времени t, t-1, t-2,… как Пусть будут отклонениями от среднего значения , например . Тогда

(33)

называется процессом авторегрессии (АР) порядка .

В (3.5) переменная регрессирует на своих предшествующих значениях; поэтому модель авторегрессирующая. Если мы определим оператор авторегрессии порядка как

(34) то модель авторегрессии можно сжато описать как

(35)

Модель авторегрессии (3.5) выражает отклонение , процесса в виде конечной взвешенной суммы предыдущих отклонений процесса плюс случайный импульс или выражает как бесконечную взвешенную сумму .

Если линейно зависит от конечного числа предыдущих – такой процесс называется процессом скользящего среднего (СС) порядка :

(36)

Если определить оператор скользящего среднего порядка как

(37)

то модель скользящего среднего можно сжато записать как

(38)

Для достижения большей гибкости в подгонке моделей к наблюдаемым временным рядам иногда целесообразно объединить в одной модели и авторегрессию, и скользящее среднее. Это приводит к комбинированной модели авторегрессии – скользящего среднего

(39)

или (40)

На практике часто оказывается, что адекватное описание наблюдаемых временных рядов достигается при помощи моделей авторегрессии, скользящего среднего или комбинированной модели, в которых и не больше, а часто и меньше

2.1.4 Условия стационарности и обратимости линейного процесса

Под стационарностью понимается неизменность статистических характеристик процесса во времени.

Условие стационарности рядов обеспечивается конечным значением дисперсии процесса. При этом автоковариации и автокорреляции должны удовлетворять ряду условий. Для линейного процесса эти условия могут быть объединены в одно, а именно, что ряд – производящая функция для весов – должен сходиться при , т.е. для B, лежащих внутри или на единичной окружности.

Для коэффициентов авторегрессии условие стационарности трансформируется в следующее требование , корни характеристического уравнения . То есть корни уравнения лежат вне или на единичном круге.

Исходя из условия стационарности, можно получить граничные условия для коэффициентов авторегрессии. Так как некоторые корни характеристического уравнения с обобщенными коэффициентами авторегрессии лежат на границе устойчивости, то есть, равны единице, то замена коэффициентов авторегрессии на коэффициенты обобщенной авторегрессии приводит к увеличе­нию порядка используемой модели АРПСС.

Так для первого порядка авторегрессии границы стационарности

(41)

Для уравнения второго порядка:

(42)

Для третьего порядка:

(43)

Выше было показано, что веса линейного процесса, если он стационарен, должны удовлетворять условию сходимости. Рассмотрим теперь ограничения, связанные с обратимостью процесса АРПСС. Условие обратимости предполагает возможность прогнозирования назад временного ряда. Оно не зависит от условий стационарности и применимо также к нестационарным линейным моделям. При прогнозировании назад значения временного ряда берут с весами .

Если веса образуют сходящийся ряд, то такой ряд называется обратимым. Это условие будет выполняться, если корни уравнения находятся внутри или на единичной окружности, то есть , при .

Таким образом, при переходе к оператору скользящего среднего (СС) налагается следующее ограничение на веса СС: корни уравнения оператора скользящего среднего должны быть вне или на единичной окружности ( ).

Сходящиеся ряды возможны и в случае, когда . При этом выражается только через , то есть через настоящее и будущее значение процесса. Таким образом, требование обратимости необходимо, если мы заинтересованы в разу­мной связи текущих событий с событиями в прошлом.

Подводя итоги, отметим, что линейный процесс стационарен, если сходится внутри или на единичной окружности, и обратим, если сходится той же области, и если сходится вне или на единичной окружности, и обратим, если сходится в той же области.

Так как условие обратимости аналогично условию стационарности, то границы обратимости будут совпадать с границами стационарности.

Границы обратимости для первого порядка:

(44)

Границы обратимости для второго порядка:

(45)

Границы обратимости для третьего порядка:

(46)