- •Введение
- •Литературный обзор
- •Формы и размеры бактериальных организмов и их краткая характеристика
- •1.2. Строение бактериальной клетки
- •1.3. Цитоплазматическая мембрана
- •2. Движение и размножение бактерий.
- •2.1 Спорообразование и его биологическая роль
- •2.2 Размножение бактерий
- •2.2.1 Процессы трансдукции и трансформации.
- •3. Анатомия бактериальной клетки. Физиология и генетика.
- •3.1 Физиология бактерий
- •3.2. Выделение веществ из бактериальной клетки
- •3.2.1 Ферменты в жизнедеятельности бактерий
- •4. Генетика бактерий
- •4.1 Мигрирующие генетические элементы
- •4.2. Типы мутаций
- •Список литературы
3.2. Выделение веществ из бактериальной клетки
Бактерии секретируют широкий спектр БАБ — ферменты, токсины, антибиотики и др. Некоторые соединения секретируются в окружающую среду непосредственно через ЦПМ, другие (обычно белки) первоначально попадают в периплазматическую полость в виде предшественников. Предшественник содержит сигнальный пептид, с помощью которого молекула белка проходит во внешнюю среду. На поверхности ЦПМ сигнальная пептидаза отщепляет сигнальный пептид, и этим завершает превращение внутриклеточного предшественника в зрелый сек- ретируемый белок. Процессы выделения в среду определённых соединений из бактериальной клетки нельзя рассматривать как выброс «шлаков»: это скорее механизмы адаптации микроорганизмов к условиям внешней среды, которые требуют конкурентной борьбы либо использования особых полимерных субстратов. В первом случае продукция антибиотиков даёт преимущество штам му-продуценту по сравнению с другими микроорганизмами, во втором — секреция гидролаз позволяет утилизировать труднодоступный субстрат, что обеспечивает их продуцентам успех в борьбе за источники питания в данной экологической нише.
3.2.1 Ферменты в жизнедеятельности бактерий
Все питательные вещества и любые элементы, подвергающиеся взаимодействиям и превращениям с участием бактерий, вступают в реакции при участии ферментов. Ферменты [от лат. fermentum,закваска], или энзимы [от греч. enzyme, дрожжи или закваска], — специфичные и эффективные белковые катализаторы, присутствующие во всех живых клетках. За каждое превращение одного соединения в другое ответственен особый фермент.
Ферменты снижают энергию активации, обеспечивая протекание таких химических реакций, которые без них могли бы проходить только при высокой температуре, избыточном давлении и при других нефизиологических условиях, неприемлемых для живой клетки.
Ферменты увеличивают скорость реакции примерно на 10 порядков, что сокращает полупери- од какой-либо реакции с 300 лет до одной секунды.
Ферменты «узнают» субстрат по пространственному расположению его молекулы и распределению зарядов в ней. За связывание с субстратом отвечает определённый участок молекулы ферментативного белка — его каталитический центр. При этом образуется промежуточный фермент-субстратный комплекс, который затем распадается с образованием продукта реакции и свободного фермента.
Регуляторные (аллостерические) ферменты воспринимают различные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность.
Эффекторные ферменты. Известно шесть основных классов ферментов, катализирующих следующие реакции: оксидоредуктазы — перенос электронов; трансферазы — перенос различных химических групп; гидролазы — перенос функциональных групп на молекулу воды; лиазы — присоединение групп по двойным связям и обратные реакции; изомера- зы — перенос групп внутри молекулы с образованием изомерных форм; лигазы — образование связей С-С, С-S, С_0, C-N за счёт реакций конденсации, сопряжённых с распадом аденозинтрифосфата (АТФ).
Бактерии способны синтезировать все ферменты, необходимые для утилизации широкого спектра питательных субстратов. Определённый субстрат в среде вызывает синтез ферментов, обеспечи- < вающих его катаболизм. В этом случае говорят об индукции катаболических ферментов индуцирующим субстратом (иидуцибельные ферменты). Образование анаболических ферментов в процессах биосинтеза регулируется путём репрессии конечным продуктом (репрессибельные ферменты). Если в среде имеются одновременно два субстрата, то бактерия использует субстрат. обеспечивающий более быстрый рост. Синтез ферментов для расщепления второго субстрата репрессируется; такой вариант известен как катаболитная репрессия. Ферменты, синтезируемые вне зависимости от условий среды, — конститутивные ферменты.
Определение ферментативной активности бактерий играет огромную роль в их идентификации. Например, все аэробы или факультативные анаэробы обладают супероксид дисму- тазой и каталазой — ферментами, защищающими клетку от токсичных продуктов кислородного метаболизма. Практически все облигатные анаэробы не синтезируют эти ферменты. Только одна группа аэробных бактерий — молочнокислые бактерии каталазонегативны, но аккумулируют псроксидазу — фермент, катализирующий окисление органических соединений под действием Н202 (восстанавливается до воды). Наличие аргининдигидролазы — диагностический признак, позволяющий различить сапрофитические виды Pseudomonasот фитопатогенных. Среди пяти основных групп семейства Enterobacteriaceaeтолько две — Escherichiae и Erw'miae— не синтезируют уреазу. Часто вирулентность штамма связана с повышенной активностью ферментов, ответственных за синтез токсинов.
Получение микробных ферментов— важнейшая отрасль промышленной микробиологии. Например, для улучшения пищеварения применяют готовые препараты ферментов — амилазы, целлюлазы, протеазы, липазы, облегчающих соответственно гидролиз крахмала, целлюлозы, белка и липидов. При изготовлении сладостей для предупреждения кристаллизации сахарозы применяют инвертазу дрожжей, для осветления фруктовых соков — пектиназу. Коллагеназа клостридий и стрептокиназа стрептококков, гидролизующие белки, способствуют заживлению ран и ожогов. Литические ферменты бактерий, секретируемые в окружающую среду, действуют на клеточные стенки патогенных микроорганизмов и служат эффективным средством в борьбе с последними, даже если они обладают множественной устойчивостью к антибиотикам. В качестве инструментария в биоорганической химии, генной инженерии и генотерапии используют выделенные из бактерий рибонуклеази, дезоксирибонуклеазы, полимеразы, ДНК-лигазы и прочие ферменты, направленно модифицирующие нуклеиновые кислоты.
Питательные субстраты бактерий
Кислород, водород, углерод и азот — основные элементы, своего рода «кирпичики» (органо-гены), составляющие органические вещества. По типу питания растительные и животные орга-4 низмы разительно отличаются, их рассматривают соответственно как аутотрофы и гетеро- трофы. Аутотрофы способны синтезировать все необходимые органические соединения из yr-J лекислоты, гетсротрофы нуждаются в органических источниках углерода. Для микроорганизмов] дачная классификация недостаточна, поскольку многообразие способов их питания можно от-] разить лишь с учётом источников энергии, углерода и донора водорода. Поэтому понятия «ауто-І трофпосты» и «гетеротрофность» в отношении бактерий применяют, имея в виду происхождеА пие клеточного углерода как источника энергии. і
УГЛЕРОД
Наиболее доступные источники углерода для бактерий — углеводы и аминокислоты, что! учитывают при изготовлении питательных сред.
Аутотрофия. Пищевые потребности аутотрофных [от греч. auto,сам, + trophe,питаниея бактерий ограничены; для их роста достаточно внесения в среду неорганических соединений,! содержащих азот и другие минеральные элементы. Аутотрофные бактерии в качестве источА ника углерода утилизируют двуокись углерода или карбонаты. Такие бактерии способны синте-1 зировать Rce необходимые соединения из простых веществ. К ним относят фото- и хемотрофные! (хемосинтезирующие) бактерии, использующие соответственно в качестве источника энергий! электромагнитное излучение (свет), либо энергию окислительно-восстановительных реакций я участием субстратов, которые служат для них источником питания. Среди аутотрофов не обна-1 ружено видов, имеющих медицинское значение.
Гетеротрофия [от греч. hetero,другой, + trophe,питание]. Некоторые бактерии не способны полностью обеспечить собственный метаболизм за счёт своих синтетических возможностей и нуждаются в наличии минимально одного органического соединения (обычно нужны аминокислоты как источник углерода и азота или углеводы в качестве источника углерода) в окружающей среде. Гетеротрофные бактерии в качестве источников углерода используют различные углеродсодержащие соединения — гексозы, многоатомные спирты, аминокислоты, органи-ческие кислоты и углеводороды. К гетеротрофным бактериям также относят бактерии-сапрофиты (метатрофы), развивающиеся на мёртвых органических остатках и бактерии-паразиты (пара- трофы), усваивающие органические соединения в форме сложных веществ живого организма.
Азот
Азот необходим бактериям для синтеза аминокислот (белков), пуриновых и пиримидиновых нуклеотидов, а также некоторых витаминов. Поскольку азот во всех живых организмах содержится в восстановленной форме, все минеральные формы азота с большей, чем у аммиака, степенью окисленности должны быть восстановлены.
Ряд микроорганизмов способен утилизировать азот только из органических соединений (ами- ногетеротрофы). Некоторые из микроорганизмов усваивают азот в виде неорганических форм (аминоаутотрофы). Однако многие микроорганизмы способны использовать как органический, так и минеральный азот.
Использование неорганического азота
В природе атомы минерального азота существуют в различной степени окисленности: от N5+ (N205, азотный ангидрид) до N3_ (NH3, аммиак). Степень усвояемости минеральных соединений азота бактериями определяется лёгкостью их превращения в аммиак, так как он является самым простым предшественником высокомолекулярных азоторганических соединений. В этой группе бактерий возможны два разнонаправленных процесса: ассимиляция (связывания минеральных форм азота в органический материал) и диссимиляция (выделения газообразных форм азота).
Ассимиляционные процессы. Связывание минеральных форм азота происходит в ходе
азотфиксации, ассимиляции аммиака и ассимиляционной нитратредукции.
Азотфиксация. Азотфиксирующие бактерии (например, Rhizobium, Azotobacter, Clostridium, Klebsiellaи др.) способны утилизировать азот из атмосферного воздуха, восстанавливая его до аммония с помощью специального фермента (нитрогеназа) в процессе, называемом азотфиксация.
Ассимиляция аммиака. Большинство бактерий усваивает аммоний в ходе ассимиляции аммиака. Бактерии, растущие на средах с аммонием, могут непосредственно включать его в органические соединения. Следует помнить, что после потребления неорганических аммонийных солей в среде накапливаются анионы (SO|~, СГ, Н3Р03~ и др.), снижающие pH среды, что замедляет рост культур. Аммонийные соли органических кислот менее подкисляют среду и более благоприятны для роста бактерий.
Ассимиляционная нитратредукция. Подавляющее большинство бактерий и грибов, как и растения, усваивают нитрат в процессе ассимиляционной нитратредукции. На первом этапе нитраты восстанавливаются до нитритов, цикл этих превращений катализирует специфический фермент — ассимиляционная нитратредуктаза В. Второй этап представляет комплекс восстановительных реакций, катализируемых нитритредуктазой, что приводит к образованию аммиака, который используется для синтеза аминокислот и других азотсодержащих компонентов клетки.
Диссимиляционные процессы. Выделение газообразных форм азота происходит при помощи нитрификации, диссимиляционной нитратредукции и аммонификации нитрата.
Нитрификация. Нитрифицирующие бактерии (Nitrobacter, Nitrococcus, Nitrosomonasи др.) окисляют соли аммония и нитриты до нитратов в процессе, называемом нитрификация.
Диссимиляционная нитратредукция (денитрификация). Ряд бактерий (Pseudomonas fluorescens, Bacillus licheniformis, Thiobacillus denitrificansи др.) ведёт восстановление нитратов и нитритов с образованием молекулярного азота в процессе диссимиляционной нитратредукции с участием фермента нитратредуктазы А.
Аммонификация нитрата. Бактерии кишечной группы способны выделять аммиак в процессе аммонификации нитрата, когда диссимиляционная нитратредуктаза А проводит только первый этап — восстанавливает нитрат до нитрита, а далее нитрит переходит в аммиак в процессе ассимиляции.
Выявление продуктов превращения исходных форм азота в среде культивирования может быть использовано для идентификации микроорганизмов. Например, денитрифицирующие бактерии выявляют на 5-6-е сутки культивирования по присутствию газа в поплавке (С02, N2) и отрица-тельной реакции на нитриты (используют реактив Грйсса) и нитраты (реакция с дифениламином). Использование органического азота
При утилизации азота из органических субстратов он включается в биомассу бактерий в виде аминогрупп. Минерализация органических соединений происходит с выделением аммиака — аммонификация органических соединений. Выделение аммиака в ходе этого процесса используют на практике для идентификации отдельных бактерий. Выделяющийся в атмосферу аммиак меняет цвет подвешенной над средой культивирования красной лакмусовой бумажки на синий. Накопление аммиака в среде определяют реактивом Нёсслера. Первая реакция характерна для многих гнилостных бактерий, вторая — для бактерий кишечной группы. Аммо-нификацию органических соединений можно рассматривать как промежуточный процесс между диссимиляцией (высвобождение аммиака) и ассимиляцией, поскольку часть органического азота при этом усваивают аммонифицирующие бактерии. Основной источник азота для аминогете- ротрофов — аминокислоты, менее значимы пурины и пиримидины. Потребность в азотсодержа-щих субстратах у бактерий варьирует.
Среди представителей рода Spirillumвид S. graniferumможет утилизировать азот мочевины, а S. annulus— нет.
Отдельные виды (например, Agrobacterium radiobacter) могут расти на среде, содержащей одну аминокислоту (в данном примере аспарагиновую), используя её как единственный источник углерода и азота. Другие способны расти лишь при наличии всех необходимых субстратов, используемых для биосинтеза белка (например, Agrobacterium rub і). Способность разлагать определённые аминокислоты (например, фенилаланин) применяют для идентификации различных бактерий.
Высокомолекулярные соединения не способны проходить через клеточную стенку бактерий, поэтому утилизировать белковый азот способны лишь бактерии, выделяющие экзоферменты (протеазы), расщепляющие белки до низкомолекулярных пептидов и аминокислот. Наиболее часто о протеолитической активности бактерий судят по способности гидролизовать (разжижать) желатину. При выращивании бактерий in vitroчасто в качестве источников азота используют пептоны — препараты неполного гидролиза белков. Лучше усваиваются пептоны со свободными аминокислотами и низкомолекулярными пептидами. Широкое распространение получили также белковые гидролизаты, не подкисляющие среду (в отличие от неорганических аммонийных солей) и удовлетворяющие потребность в аминокислотах у видов, неспособных к их синтезу.
Фосфор
В клетках бактерий фосфор присутствует в виде фосфатов (преимущественно фосфатов сахаров) в составе нуклеотидов и нуклеозидов. Фосфор также входит в состав фосфолипидов различных мембран. Фосфаты играют особую роль в энергетическом обмене, расщеплении углеводов и в мембранном транспорте. Ферментативный синтез ряда биополимеров может начаться только после образования фосфорных эфиров исходных соединений (то есть после их фосфо рилирования). Основной природный источник фосфора для бактерий — неорганические фосфаты и нуклеиновые кислоты. Они присутствуют в составе бульонов, в синтетические питательные среды их вносят дополнительно.
Сера
Сера входит в состав некоторых аминокислот (цистеин, метионин), витаминов (биотин, тиамин), пептидов (глутатион) и белков; участвует в синтетических процессах в восстановленном состоянии — в виде R-SH-групп, обладающих высокой реакционной способностью и легко дегидрирующих в R-S-S-R’-группы. Последние используются для образования более сложных соединений, соединённых дисульфидными (S—S) мостиками. Гидратирование этих соединений восстанавливает их и разрывает мостики. Подобные реакции имеют важное значение для регуляции окислительно-восстановительного потенциала в цитоплазме бактерий. Основной серосодержащий компонент бактериальной клетки — цистеин, в состав которого сера входит в виде тиоловой (—SH) группы. Так, сера в составе метионина, биотина, тиамина и глутатиона происходит из тиоловой группы цистеина. Хотя сера входит в состав аминокислот и белков в восстановленной форме, большинство бактерий утилизирует серу в форме сульфатов. Перевод окисленной серы из сульфат-иона в восстановленную форму в тиоловой группе известен как ассимиляционная сульфатредукция. У значительно меньшего числа бактерий (например, анаэробных бактерий рода Desulfovibrio)происходит диссимиляционная сульфатредукция, при которой сульфаты, сульфиты или тиосульфаты используются как терминальные акцепторы электронов. При этом образуется сероводород (H2S), как продукт восстановления. Способность бактерий выделять сероводород применяют на практике как дифференциально-диагностический признак. Отдельные группы бактерий (например, серобактерии родов Beggiatoa, Thiothrix) могут окислять сероводород и элементную серу до сульфатов.
Кислород
Кислород, входящий в состав органических веществ бактерий, включается в них двояким путём: опосредованно (из молекул воды либо из С02) и непосредственно. Специальные ферменты — оксигеназы — включают кислород (О2-) в органические соединения непосредственно из молекулярного кислорода (02). Оксигеназы необходимы для разложения многих веществ (например, ароматических углеводородов), трудно поддающихся действию других ферментов. Многие бактерии удовлетворяют свои энергетические потребности за счёт дыхания, в процессе которого кислород выступает в качестве терминального акцептора электронов и протонов в дыхательной цепи. В соответствии с потребностями в молекулярном кислороде бактерии разде-ляют на пять основных групп.
Облигатные (строгие) аэробы способны получать энергию только путём дыхания и поэтому обязательно нуждаются в молекулярном кислороде. К строгим аэробам относят, например, представителей рода Pseudomonas.
Облигатные (строгие) анаэробы. Рост таких бактерий может быть остановлен даже при низком р02 (например, при 10"sатм), поскольку у них отсутствуют ферменты, расщепляющие токсические соединения кислорода (каталазы, супероксид дисмутазы). К облигатным анаэробам относят роды Bacteroides, Desulfovibrio.
Факультативные анаэробы растут как в присутствии, так и в отсутствии 02. К факультативным анаэробам относят энтеробактерии и многие дрожжи, способные переключаться с дыхания в присутствии 02 на брожение в отсутствии 02.
Аэротолерантные бактерии способны расти в присутствии атмосферного кислорода, но не использовать его в качестве источника энергии. Энергию аэротолерантные бактерии получают исключительно с помощью брожения (например, молочнокислые бактерии).
Микроаэрофильные бактерии хотя и нуждаются в кислороде для получения энергии, луч-ше растут при повышенном содержании С02, поэтому они также известны как «капнофиль- ные микроорганизмы» [от греч. kapnos,дым, + philos,любовьі. К микроаэрофилам относят большинство аэробных бактерий (например, бактерии родов Campylobacters Helicobacter). Бактерии могут существовать в среде, содержащей кислород только при наличии толерант-ности к кислороду, которая связана со способностью бактериальных ферментов нейтрализо-вать токсичные соединения кислорода. В зависимости от количества электронов, одновременно переносимых на молекулу 02, образуются: ион пероксида О2- (образуется флавиновыми оксида- зами при переносе 2е_), супероксид-радикал (могут образовать ксантин оксидаза, альдегид ок- сидаза, НАДФН-оксидаза при переносе 1е“), и гидроксил-радикал (продукт реакции супероксид-радикала с перекисью водорода). В детоксикации реактивных кислородных радикалов уча-ствуют супероксид дисмутаза, пероксидаза и катал аза.
Супероксид дисмутаза конвертирует супероксид-радикал (наиболее токсичный метаболит) в Н202. Фермент присутствует в аэробных и аэротолерантных бактериях.
Каталаза превращает Н202 в Н20 и 02. Фермент имеется у всех аэробных бактерий, но отсутствует у аэротолерантных организмов. Строгие анаэробы обычно каталаза- и супероксид- дисмутаза- отрицательны.
Пероксидаза. Из всех каталаза-отрицательных микроорганизмов лишь молочнокислые бакте-рии способны расти в присутствии воздуха. Их аэротолерантность связана со способностью накапливать пероксидазу. Фермент нейтрализует Н202 в реакции с глутатионом; при этом перекись водорода превращается в воду.
Энергетический метаболизм бактерий
Метаболизм [от греч. metahole,изменение] — совокупность всех химических превращений, происходящих в клетках. Этот термин объединяет два процесса: катаболизм (диссимиляция, или энергетический метаболизм) и анаболизм (ассимиляция, или конструктивный метаболизм). Первый процесс включает расщепление различных субстратов для получения энергии, второй — синтез высокомолекулярных соединений, используемых для образования клеточных структур. Промежуточный обмен веществ, превращающий низкомолекулярные фрагменты питательных веществ в ряд органических кислот и фосфорных эфиров, называют амфиболизм. Различия в метаболизме у разных групп бактерий нередко используют в качестве фенотипических маркёров при идентификации микроорганизмов. На практике любая схема идентификации неизвестной бактерии включает исследование следующих параметров.
Способность к утилизации различных веществ в качестве источника углерода.
Способность к образованию специфических конечных продуктов в результате разложения субстратов.
Способность смещать pH среды культивирования в кислую или щелочную сторону. Метаболизм большинства бактерий осуществляется посредством биохимических реакций
разложения органических (реже неорганических) веществ и синтеза компонентов бактериаль-ной клетки из простых углеродсодержащих соединений. Для нормальной жизнедеятельности любому живому организму необходимы структурные фрагменты и энергия. Реакции, ведущие к синтезу различных компонентов бактериальных клеток (например, полимеризация аминокислот в белки), представляют собой эндэргонические процессы, то есть процессы, не протекающие самопроизвольно, поскольку изменение в них свободной энергии Гиббса (AG) положительно. Спонтанно в живой клетке могут происходить только экзэргонические реакции, сопро-вождающиеся снижением содержания в ней свободной энергии. Иными словами, для синтеза нового клеточного материала отдельные синтетические реакции должны быть сопряжены с реакциями, в результате которых высвобождается энергия, идущая на этот синтез.
Реакции, связанные с затратой энергии, реализуются через специальные макроэргические соединения. У бактерий таковыми являются нуклеозидтрифосфаты, ацилфосфаты и ацилтиоэфиры. Среди них наиболее важен АТФ, играющий роль своеобразной «разменной монеты» энергетического метаболизма. АТФ — термодинамически неустойчивая молекула и последовательно отщепляет фосфат с образованием аденозиндифосфата (АДФ) или аденозин- монофосфата (АМФ). Именно эта неустойчивость позволяет АТФ выполнять функцию переносчика химической энергии, необходимой для удовлетворения большей части энергетических потребностей клеток. Энергия каждой из двух этих фосфатных связей приблизительно равна 7,5 ккал, тогда как у обычных фосфатных связей она не превышает 2 ккал. Иными словами, для образования фосфатных связей АТФ требуется больше энергии, но и при их разрыве она выделяется в больших количествах. Другие макроэргические соединения бактериальных клеток: гуанозинтрифосфат (ГТФ), уридинтрифосфат (УТФ), цитидинтрифосфат (ЦТФ), дезокситими- динтрифосфат (дТТФ), ацетилфосфат, фосфоенолпируват, креатинфосфат, ацетилкоэнзим А (аце- тил-КоА). Долгое время считали, что единственный тип энергетической валюты — высокоэнергетические химические соединения, а среди них прежде всего АТФ, однако последние работы биоэнергетиков опровергли эту догму. Оказалось, что клетка располагает тремя типами энергетической валюты: наряду с АТФ такую роль выполняют протонный и натриевый потенциалы на биологических мембранах.
Синтез (регенерация) АТФ
Синтез АТФ осуществляется тремя способами: фотосинтетическое фосфорилирование, окислительное фосфорилирование (сопряжённое с транспортом электронов по дыхательной цепи) и субстратное фосфорилирование. В первых двух процессах преобразование поступившей с потоком электронов энергии в энергию фосфоэфирных связей АТФ осуществляет особый фермент — АТФ -синтетаза. Этот фермент присутствует во всех мембранах, участвующих в преобразовании энергии (мембраны бактерий, митохондрий и хлоропластові. АТФ-синтетаза катализирует присоединение неорганического фосфата (Фн) к АДФ, образование которого осуществляет аде- нилаткиназа (АМФ + АТФ = 2 АДФ). Активность АТФ-синтетазы можно обнаружить по обратной реакции гидролиза АТФ: АТФ + Н20 = АДФ + Фн + Н+. Благодаря обратимости реакции фосфорилирования, накопившийся АТФ может быть использован для создания протонного градиента, обеспечивающего энергией движение жгутиков и осмотическую работу. Энергия также направляется для обратного переноса электронов, необходимого для восстановления никотинамидадениндинуклеотида (НАД) при использовании бактериями неорганических доноров электронов (SO2-, N03, Fe2+и др.).
ПОЛУЧЕНИЕ ЭНЕРГИИ В ПРОЦЕССЕ ФОТОСИНТЕЗА. Основной источник энергии для жизни на Земле — Солнце, но непосредственно утилизировать энергию инсоляции в мире бактерий способны лишь немногочисленные бактерии-фототрофы [от греч. photos,свет, + trophe,питание]. Фотосинтезирующие бактерии, подобно растениям, превращают энергию видимого света в протонный потенциал на энергопреобразующей мембране. В последующем с помощью АТФ- синтетазы энергия консервируется в АТФ. Основной признак, отличающий фотосинтетические реакции у пурпурных и зелёных бактерий от таковых у растений и цианобактерий, — отсутствие выделения кислорода (так как в качестве донора электронов они используют не воду, a H2S или органические вещества). У бактерий аналог хлоропластов растительных клеток — хроматофоры, содержащие хлорофилл и каротиноидные пигменты. Таким образом, под фотосинтезом понимают происходящее в клетках фототрофных организмов преобразование световой энергии в биохимически доступную энергию (протонный градиент на мембране тилакоидов и хлоропластов, АТФ) и восстановительную силу НАДФН+, а также связанный с этим синтез клеточных компонентов. Реакции фотосинтеза протекают в две стадии (световая и темновая фазы).
Световая фаза. Под действием фотонов электрон хроматофора активируется, затем он возвращается в исходное состояние. При этом высвобождается энергия, используемая для создания протонного градиента, а затем синтеза АТФ и восстановления никотинамидадениндинук- леотидфосфата (НАДФ) до НАДФН+. Последнее может происходить за счёт обратного транспорта электронов с затратой АТФ.
Темновая фаза. Образовавшиеся макроэргические соединения используются для ассимиля-ционного восстановления С02 в глюкозу. Глюкоза содержит значительное количество энергии (около 690 ккал/моль), что и используют гетеротрофные бактерии, разлагая глюкозу и «запасая» энергию в универсальном хранителе — АТФ.
Получение энергии при окислении химических соединений.
Преобладающую часть бактерий составляют бактерии-хемотрофы, получающие энергию в результате окислительно-восстановительных реакций расщепления химических веществ, которые в ряде случаев служат для них также источником питания. Разные бактерии получают энергию либо в процессе брожения либо в процессе дыхания. При брожении АТФ образуется исключительно путём субстратного фосфори- лирования, а в процессе дыхания преимущественно путём окислительного фосфорилирования за исключением начальных этапов превращения гексоз в триозы (гликолиз, см. ниже).
Получение энергии субстратным фосфорилированием
Субстратное фосфорилирование может происходить при различных реакциях промежуточного метаболизма. При дегидрировании некоторых определённых субстратов часть энергии, освободившейся при окислении, сохраняется в форме высокоэнергетического фосфата. Богатая энергией фосфатная группа затем переносится на АДФ с образованием АТФ. Такой процесс называют фосфорилированием на уровне субстрата (субстратное фосфорилирование). В обмене углеводов важнейшие реакции, приводящие к регенерации АТФ, катализируют фосфоглицераткиназа (1,3-бифосфоглицерат + АДФ - 3-фосфоглицерат + АТФ), пируваткиназа(фосфоэнолпируват + АДФ = пируват + АТФ) и ацетаткиназа(ацетилфосфат или бутирилфосфат + АДФ = ацетат или бутират + АТФ).Бактерии и дрожжи, сбраживающие сахара, располагают лишь тем АТФ, который получается с помощью этих ферментов.
Брожение.При брожении происходит анаэробное разложение углеводов и образование АТФ посредством субстратного фосфорилирования. Брожение характерно для факультативных и облигатных анаэробов. При брожении продукты расщепления органического субстрата могут служить одновременно и донорами и акцепторами водорода. Отдельные этапы окисления представляют собой дегидрирование, при котором водород переносится на НАД. Акцепторами водорода в составе НАДН+ служат промежуточные продукты расщепления субстрата. Кислород подавляет брожение, и оно у факультативных анаэробов сменяется дыханием. По выходу энергии брожение уступает дыхательному метаболизму: при сбраживании микроорганизмами 1 моля глюкозы образуется от 1 до 4 молей АТФ. Для сравнения: у дрожжей на 1 моль сброженной глюкозы образуется 2 моля АТФ, а при дыхании — 38. При ферментации субстратов в среде накапливаются конечные продукты (лактат, бутират, ацетон, 2-пропанол, этанол, ацетоии и др.). Определение природы этих продуктов— важный момент для идентификация анаэробов. Например, образование ацетоина определяют в реакции Фогеса-Проскауэра, кислотообразова- ние — в тесте с метиловым красным, индолообразование — по методу Грациана. Применяют и другие тесты, разработанные для идентификации бактерий. Любое брожение проходит две стадии: первая (окисление) включает превращение глюкозы в пировиноградную кислоту, вторая (восстановление) — присоединение атомов водорода для восстановления пировиноградной кислоты (рис. 4-7). Сам процесс образования пировиноградной кислоты включает серию реакций, общих для брожения и аэробного дыхания. У микроорганизмов выделяют три пути образования триоз (пировиноградной кислоты и глицеральдегидфосфата) из углеводов: гликолитичес- кий (фруктозо-1,6-бифосфатный), пентозофосфатный и 2-кето-3-дезокси-6-фосфоглюконатный (КДФГ-путь, путь Энтнера-Дудорова-Парнаса). Согласно образующимся продуктам, брожение разделяют на следующие типы.
Спиртовое брожение включает превращение пирувата в С02 и этанол. В течение многих веков способность дрожжей (особенно Saccharomyces cerevmae)утилизировать глюкозу в анаэробных условиях с высоким выходом этанола и углекислоты применяют в пивоварении и виноделии. Аналогично дрожжам образует этанол Sarcina ventriculi.Бактерии кишечной группы, молочнокислые бактерии и клостридии образуют этанол в качестве побочного продукта сбраживания сахаров.
Гетероферментативное брожение (образуется смесь различных продуктов) характерно для бифидобактерий и молочнокислых бактерий, для рода Leuconostoc.Оно приводит к образованию молочной и уксусной кислот в ряде сходных процессов. Конечными продуктами могут быть дополнительно С02 и этанол, а при сбраживании фруктозы — маннитол. Муравьинокислое брожение. Этот тип брожения выделяют на том основании, что характерный, хотя и не главный продукт брожения — муравьиная кислота. Часто этот тип называют брожение смешанного типа, поскольку, кроме формиата, образуется ряд других органических кислот. Так, для большинства членов семейства Enterobacteriaceaeхарактерно выделение муравьиной и других кислот. Индивидуальные признаки брожения, осуществляемого кишечной палочкой, — расщепление пирувата с образованием ацетил-КоА и формиата, разложение формиата на углекислоту и молекулярный водород, восстановление ацетил-КоА до этанола, и, в отличие от Enterobacter aerogenes,отсутствие способности образовывать из пирувата ацетони и 2,3-бутандиол.
Пропионовокислое брожение. Пируват или лактат карбоксилируется до оксалоацетата, затем оксалоацетат преобразуется в пропионовую кислоту через метилмалонил-коэнзим А у большинства пропионовых бактерий и через акрилоил-коэнзим А у Clostridium propionicumи Bacteroides ruminicola.
Масляно-кислое и ацетонобутиловое брожение. Масляная кислота (бутират), бутанол, ацетон, 2-пропанол и ряд других органических кислот и спиртов — типичные продукты сбраживания углеводов анаэробными спорообразующими бактериями (клостридиями). Если споры С. histolyticumили С. septicumпопадают в открытую рану, где нет доступа воздуха, то они начинают расти, образуя дурно пахнущие продукты брожения.
Гомоацетатное брожение. Некоторые клостридии (С. formicoaceticum, С. acidi-urici) способны переносить водород, отщепляемый от субстрата, только на С02. При этом образуется исключительно ацетат.
Получение энергии окислительным фосфорилированием
У всех дышащих бактерий имеется система транспорта электронов (дыхательная цепь). К компонентам этой системы относят локализованные в мембране ферменты с относительно прочно связанными низкомолекулярными простетическими группами. У эукариотов такие ферменты локализуются на внутренней мембране митохондрий, у прокариотов — в плазматической мембране. Перенос электронов осуществляется по следующей стандартной схеме: органичес-кий субстрат -э НАД -* флавопротеины ¦* железосерные белки ¦* хиноны -* цитохромы (а, Ь, с) -* конечный акцептор (молекулярный кислород либо иной акцептор электронов). При движении
3-5819 электронов по дыхательной цепи создаётся градиент протонов, энергия которого запасается в виде АТФ в процессе окислительного фосфорилирования.В дыхательной цепи имеются только три точки окисления, в каждой из которых освобождается столько энергии, сколько содержится в одной высокоэнергетической связи АТФ. При переносе пары протонов от НАД* на кислород может образоваться 3 молекулы АТФ. При использовании в качестве субстрата сукцината, от которого водород включается в цепь только на уровне флавопротеинов, образуется 2молекулы АТФ. Фумаратное дыхание сопряжено с образованием 1 молекулы АТФ.
Наиболее часто бактерии получают энергию в результате окисления органических субстратов (чаще всего углеводов) до С02и Н20; иначе этот процесс известен как дыхание. Следуеі помнить, что дыханием следует считать окисление не только органических субстратов, так как бактерии могут окислять вещества, не подверженные ассимиляции, например сероводород или трёх валентное железо (так называемое «сероводородное дыхание», «железное дыхание»).
Если в реакциях окисления органических и неорганических веществ дегидрогеназами конечным акцептором электронов служит молекулярный кислород, то такой тип метаболизма называют аэробное дыхание. При этом молекулярный кислород переходит в ион О2-. Пары протонов, отщеплённые от органических субстратов, взаимодействуя с ионизированным кислородом при аэробном дыхании, образуют воду. Если терминальными акцепторами электронов выступают соединения, содержащие «связанный кислород» (нитраты, нитриты, сульфаты, карбонаты, а также способные к восстановлению элементная сера, трёхвалентное железо и органически! акцептор — фумарат), то такой тип метаболизма называют анаэробное дыхание. Аэробное дыхание — наиболее распространённый процесс получения энергии среди коммен салов и патогенных для человека бактерий.
Анаэробное дыхание осуществляют факультативно анаэробные бактерии и строгие анаэро бы. Многие факультативные анаэробы при отсутствии кислорода в качестве акцепторов элёкт ронов используют нитраты (процесс известен как нитратное дыхание). При этом образу ются характерные продукты восстановления — нитриты и другие восстановленные формы азота, что используют на практике для идентификации бактерий.
В зависимости от природы утилизируемого соединения выделяют бактерии-органотрофы использующие в качестве доноров водорода и электронов органические вещества, и бактерии литотрофы [от греч. tithos,камень, + trophe,питание], использующие в тех же целях неорга нические соединения (Н2, NH3, H2S, S, СО, двухвалентное железо и др.). Среди хемолитотроф ных бактерий имеющих медицинское значение видов не обнаружено. Обычно ограничивают указанием на основной способ получения энергии и природу донора водорода и электронов.
Кишечную палочку, таким образом, относят к хемоорганотрофам, так как она получает энер гию путём окисления химических соединений, используя в качестве донора водорода и элек тронов органические соединения.
Нитрифицирующие бактерии относят к хемолитотрофам, а растения, цианобактерии и пур пурные серобактерии — к фотолитотрофам.
Катаболизм углеводов
В качестве источника питания и энергии при выращивании в искусственных условиях бакте рии наиболее часто используют углеводы. Способность утилизировать различные углеводы - важный диагностический признак. Базовый субстрат — глюкоза, которую бактерии разла гают в процессе дыхания либо брожения.Многие реакции катаболизма глюкозы протекаю1 одинаково у аэробных и анаэробных бактерий, в частности три пути превращения гексоз і триозы (гликолиз, пентозофосфатный путь и путь Энтнера-Дудорова).
Пентозофосфатный путь включает не только образование пен- тозофосфатов, но и реакции превращения пентозофосфатов в триозо-3- фосфаты. В результате изомеризации фруктозо-6-фосфата в глюкозо-6-фосфат и конденсации двух молекул триозо-3-фосфата в гексозо- фосфат все перечисленные реакции замыкаются в цикл, при одном обороте которого из 3 молекул глюко- зо-6-фосфата образуются 2 молекулы фруктозо-6-фосфата, одна молекула триозо-3-фосфата, 3 молекулы С02 и трижды по 2 восстановленных ИАДФ (НАДФН+).Последовательность подобных превращений глюкозы у бактерий идентична тако-вой у высших организмов.
Иуть Энтнера-Дудорова
Путь Энтнера-Дудорова, или КДФГ-путь (назван по характерному образующемуся продукту — 2-кето-3-дезокси-6-фосфоглюконату), — сравнительно редкий тип метаболизма, наблюдаемый у ряда бактерий (Pseudomonas aeruginosa, Alcaligenes eutrophus)',у высших организмов он отсутствует (рис. 4-10). Этот путь — основной для расщепления гексоз у бактерий с дефицитом фосфофруктокиназы (например, у бактерий рода Pseudomonas).
Катаболизм азотсодержащих органических соединений
Доступные субстраты для получения углерода, азота и энергии — аминокислоты, пурины и пири- мидины. Как аэробные, так и анаэробные бактерии используют эти соединения для синтеза белка либо непосредственно, либо после ряда превращений и вовлечения в промежуточный обмен. Аминокислоты
Декарбоксилирование и дезаминирование. Первой реакцией катаболизма аминокислот может быть декарбоксилирование либо дезаминирование. Декарбоксилазы действуют обычно в кислой среде, образуя С02 и первичные амины (так называемые биогенные амины, трупные яды — кадаверин, путресцин, агматин). Поскольку при этом высвобождаются основные группы (амины), то такой процесс рассматривают как механизм нейтрализации среды и сохранения pH в физиологических пределах.
Дезаминирование аминокислот идёт с выделением аммиака. В зависимости от судьбы углеродного скелета различают дезаминирование окислительное(наиболее распространённое, например, превращение глутаминовой кислоты в 2-оксоглутаровую), гидролитическое и приводящее к образованию ненасыщенных соединений.Ферменты, катализирующие эти реакции, обычно специфичны для D- и L-изомеров аминокислот. Углеродные фрагменты, не содержащие азота, используются в процессах брожения или дыхания. Если в состав аминокислот входит сера, то последняя обычно высвобождается в форме сероводорода или меркаптанов. Разложение ароматических аминокислот (например, триптофана) происходит с образованием индола и скатола. У некоторых микроорганизмов в качестве источников энергии могут использоваться лишь некоторые продукты дезаминирования. Например, эшерихии и протеи дезаминируют триптофан с образованием индола и пирувата, из которых лишь последний утилизируется как источник энергии. Поскольку индол накапливается в культуре, то его наличие легко обнаруживают с помощью реактива Эрлиха(смесь n-диметиламинобензальдегида и НС1 в этаноле), что используют для идентификации бактерий на практике.
Некоторые бактерии обладают специальными механизмами получения энергии при расщеплении аминокислот. Например, аргинин расщепляет аргининдегидролазная система, состоящая из нескольких ферментов. Первоначально аргининдезаминаза катализирует его превращение в цитрул- лин, затем последний превращается в орнитин через реакцию, сопряжённую с синтезом АТФ.
На средах, содержащих смесь аминокислот, многие клостридии получают большую часть энергии не из отдельных компонентов, а путём сопряжения окислительно-восстановительных реакций между парами подходящих аминокислот, известного как механизм Стйклэнда. С этих позиций аминокислоты можно разделить на акцепторы (глицин, орнитин, пролин) и доноры водорода (аланин, изолейцин и валин). Первоначально донор окисляется до кетокислоты, затем «доокисляется» до жирной кислоты. Образующийся при этом НАДЬГ утилизируется для восстановления другой аминокислоты — акцептора (или, реже, другого азотистого соединения). Переаминирование. Кроме реакций дезаминирования и декарбоксилирования, аминокислоты могут подвергаться переаминированию, то есть переносу целой аминогруппы от аминокислоты к а-кетокислотам без промежуточного образования аммиака. Участвующая в переамини- ровании аминокислота (донор аминогруппы) превращается в а-кетокислоту (продукт окислительного дезаминирования), а а-кетокислота (акцептор) подвергается восстановительному аминированию. Реакции катализируют специфические трансферази. В реакциях переаминиро- вания участвуют все L-аминокислоты, при этом на а-кетокислоты переносятся аминогруппы не только в a-положении, но и в других положениях.
Пурины и пиримИДИНЫ
Пурины и пиримидины становятся доступными для энергетического метаболизма лишь после гидролиза нуклеотидов и нуклеозидов. В результате их разложения образуются углекислота, аммиак, муравьиная, уксусная и молочная кислоты, часть из которых включается в рассмотренные выше энергетические пути.
Катаболизм жиров и жирных кислот
Жиры (сложные эфиры глицерина и жирных кислот) и воска (сложные эфиры жирных кислот и одноатомных спиртов) — восстановленные субстраты и доступны бактериям в качестве источников энергии. Первоначально эфиры жирных кислот гидролизуются до глицерина или одноатомного спирта и свободных жирных кислот (гидролиз катализируют внутри- и внеклеточные липазы). После фосфорилирования глицерин может включаться в гликолитический путь и‘ утилизироваться с образованием АТФ. Жирные кислоты метаболизируются через каскад окислительных реакций. Цель этих превращений — образование ацетил-КоА, вступающего в цикл Кребса.
Эндогенный энергетический метаболизм
Большинство бактерий способно длительно выживать При отсутствии экзогенных ИСТОЧНИ- I ков энергии. При этом бактерии нередко проявляют признаки активного метаболизма (например, сохраняют подвижность). Это связано со способностью бактерий продуцировать энергию окислением внутриклеточных компонентов. Основные внутриклеточные эндогенные источники энергии — ЛПС, липиды и поли-р-масляная кислота. Они расщепляются деполимеризующими ферментами до мономеров, которые включаются в вышеперечисленные пути. Эффективность подобных превращений может быть выше традиционных. Например, при гликолизе внутриклеточного крахмала или гликогена на 1 моль глюкозы образуется 3 моля АТФ, а не 2, как при простом включении глюкозы в этот путь. Это объясняется тем, что в результате расщепления крахмала с помощью а-1,4-глюканфосфорилазы (фосфоролиза) образуется глюкозо-1-фосфат, превращающийся в глюкозо-6-фосфат ещё до вступления в путь Эмбдена-Мейерхофа-Парнаса. Следовательно, АТФ не затрачивается на его образование, и, значит, общий выход АТФ выше.
Конструктивный метаболизм
Совокупность биосинтетических реакций включения низкомолекулярных соединений в клеточные полимеры составляет суть конструктивного метаболизма. Комплекс этих реакций иногда называют пластическим обменом.
Углеродные соединения для биосинтетических реакций
Для биосинтеза клеточных компонентов необходимы соответствующие низкомолекулярные соединения-предшественники (например, сахара или аминокислоты). При наличии таких предшественников в окружающей среде они непосредственно вовлекаются в различные биосинтетические пути. Однако гораздо чаще бактериям приходится предварительно синтезировать большую часть молекул-предшественников из доступных исходных продуктов. Огромное разнообразие субстратов, которые бактерии могут использовать в качестве источников питания, вытекает из широкого спектра их метаболических возможностей. Исходные продукты для биосинтеза образуются в ходе различных путей катаболизма, включая гликолиз, КДФГ-путь, пентозофос- фатный путь, окисление пирувата и ЦТК. Например, углеродные фрагменты из ЦТК — сукцинил-КоА и ацетил-КоА — используются соответственно для образования тетрапирролов и жирных кислот. Следует помнить, что подобное «изъятие» интермедиатов из ЦТК возможно лишь при постоянном восполнении их дефицита.
Биосинтез аминокислот и белков
Аминокислоты. Большинство свободно живущих бактерий способно синтезировать все необходимые им аминокислоты. Теоретически все 20 необходимых аминокислот могут находиться в окружающей среде и быть доступными для утилизации. Кроме того, бактерии способны получать аминокислоты из белковых молекул, расщепляя их бактериальными протеазами и пептидазами. Образующиеся при этом олигопептиды и аминокислоты транспортируются в клетку, где включаются в биосинтетические пути либо расщепляются на низкомолекулярные продукты. Паразитические бактерии потребляют готовые аминокислоты из организма хозяина. Бактериям, культивируемым на питательных средах, содержащих только неорганические источники азота или ограниченное количество аминокислот, приходится синтезировать некоторые из них (или даже все) из доступных азотсодержащих соединений. Основное назначение источников азота — поступление в бактериальную клетку «сырья» для формирования аминных (NH2) и иминных (NH) групп в молекулах аминокислот, нуклеотидов, гетероциклических оснований и других химических компонентов. При этом азотсодержащие вещества, помимо сырья для пластического обмена, могут включаться в энергетический метаболизм (например, у анаэробов некоторые аминокислоты могут образовывать окислительно-восстановительные системы). Наиболее доступные минеральные источники азота в природе — аммонийный ион (NHj) и аммиак (NH3), легко проникающие в клетки и просто трансформирующиеся в амино- и иминогруппы, Основные исходные соединения для синтеза аминокислот — пируват (образуется в гликоли- тическом цикле), а-кетоглутарат и фумарат (образуются в ЦТК). При синтезе молекул аминокислот атом азота вводится на последних этапах биосинтеза путём переаминирования; лишь L-аланин, L-глутамат и аспартат образуются через прямое аминирование.
Пептиды и белки. Бактериальная клетка способна синтезировать несколько тысяч различных белков, каждый из которых содержит в среднем 200 аминокислотных остатков. Информация, направляющая синтез этих белков, закодирована в последовательности нуклеотидов ДНК. Синтез полипептидной цепи происходит в цитоплазме клетки на рибонуклеопротеидных частицах (рибосомах) в сочетании с молекулой мРНК или информационной РНК (иРНК), которая синтезируется на матрице ДНК в процессе транскрипции. Бактериальная рибосома обладает массой 2,7106Д и состоит на 65% из рибосомной РНК (рРНК) и на 35% из белка (примерно 50 различных белков). Информация, содержащаяся в молекулах мРНК, транслируется в поли- пептидную цепь при участии особого класса молекул РНК, известных как тРНК. Многофункцио-нальность тРНК позволяет им присоединяться к определённым аминокислотам, связываться с рибосомой и узнавать определённые последовательности из трёх нуклеотидов (кодон) в составе мРНК. Узнаваемый кодон соответствует конкретной аминокислоте; нужная аминокислота «подаётся» при помощи узнающей её молекулы тРНК к концу растущей полипептидной цепочки. Так растёт будущая молекула белка.
Биосинтез нуклеотидов и нуклеиновых кислот
Пуриновые и пиримидиновые нуклеотиды. Образование пуриновых и пиримидиновых нуклеотидов de novoиз низкомолекулярных соединений происходит независимыми друг от друга путями. Источник рибозилфосфатной части всех нуклеотидов— 5-фосфорибозил-1-пирофосфат — образуется после взаимодействия рибозо-5-фосфата с АТФ. Дезоксирибонуклеотиды образуются путём восстановления соответствующих рибонуклеотидов.
Пуриновые нуклеотиды построены на основе фосфорибозилпирофосфата, с которого и начинается путь их синтеза. Девятичленное пуриновое кольцо синтезируется последователь-ным присоединением аминогрупп и мелких углеродсодержащих групп, причём все интермедиаты биосинтеза— рибонуклеотиды.
Пиримидиновые нуклеотиды формируются в серии последовательных превращений карбоксилсодержащих интермедиатов, начиная с карбамоилфосфата. Рибозофосфатный остаток присоединяется только после того, как шести членное пиримидиновое кольцо полностью синтезировано конденсацией аспарагиновой кислоты и карбамоилфосфата.
Нуклеиновые кислоты. Большинство синтезируемых нуклеотидов полимеризуется в РНК и ДНК, небольшая часть используется для синтеза коферментов и богатых энергией соединений. Основная часть бактериальной ДНК находится в виде двухцепочечной кольцевой молекулы — бактериальной хромосомы. Б процессе репликации хромосома с высокой точностью удваивается, обеспечивая передачу информации потомкам и давая им возможность синтезировать те же самые белки, что и родительская клетка. Синтез ДНК из субстратов-мономеров, четырёх дезоксинуклеозидтрифосфатов (дАТФ, дГТФ, дЦТФ и дТТФ), катализируют ДНК-полимеразы. При этом на каждой одиночной цепи ДНК происходит синтез новой комплементарной цепи: ДНК-полимеразы встраивают нуклеотиды в соответствии с правилами водородного связывания (Гуанин против Цитозина, Аденин против Тимина). Процесс удвоения клеточной ДНК называют репликацией. Если цепь ДНК служит матрицей, на которой полимеризуется цепь РНК (мРНК), то этот процесс называют транскрипцией.
Биосинтез олиго и полисахаридов
На дрлю внутриклеточных олиго- и полисахаридов может приходится до 60% сухой массы бактериальной клетки, тогда как количество синтезируемых внеклеточных полисахаридов может во много раз превышать массу бактерии. При отсутствии сахаров в окружающей среде бактерии синтезируют их из доступных источников углерода. Например, бактерии, растущие на средах, содержащих трёхуглеродные соединения, синтезируют гексозофосфаты из пирувата с помощью реакций, характерных для фруктозодифосфатного пути. Бактериальные олиго- и полисахариды образуются путём присоединения к акцепторным молекулам остатков сахаров из нук- леозиддифосфосахаров. Например, трегалоза, содержащая два остатка глюкозы, соединённых а-1,4-связями, образуется из уридиндифосфатглюкозы и глкжозо-6-фосфата. Характерная особенность синтеза полисахаридов, как и в случае синтеза ДНК, — необходимость затравки — короткого фрагмента того же полисахарида, который будет синтезироваться; он служит акцептором новых мономерных фрагментов.
Биосинтез липидов
Липиды — гетерогенный класс клеточных компонентов, выделенный на основании их растворимости в неполярных растворителях (эфир, бензол, хлороформ) и нерастворимости в воде. К ним относят жиры, фосфолипиды, стероиды, изопреноиды и поли-р-оксибутират. Липиды подразделяют на два большие класса: липиды, содержащие жирные кислоты, связанные эфирной связью (например, поли-р-оксимасляная кислота, гликолипидный компонент мембраны цианобактерий, ЛПС клеточной стенки), и липиды, состоящие из повторяющихся пятиуглеродных изопреновых фрагментов (например, бактопренол, к которому прикрепляются составляющие компоненты клеточной стенки во время её синтеза). Липиды с изопреновыми единицами содержат хлорофиллы и хиноны. Жирные кислоты синтезируются отдельно, а затем с помощью эфирной связи включаются в липиды. Число типов жирных кислот у каждого вида бактерий строго определено. У прокариот преимущественно встречают насыщенные жирные кислоты, образование которых начинается с переноса ацетильной группы с ацетил-КоА на особый ацил- переносящий белок. Этот комплекс служит акцептором, к которому последовательно присоединяются двух угле родные фрагменты, пока не будет достигнута длина, характерная для соединения, присущего данной бактерии (обычно C14-C|g). Для удобства понимания конструктивный и энергетический обмены были рассмотрены выше по отдельности. Однако разграничить процессы получения энергии и процессы, связанные с конструктивным метаболизмом, крайне сложно, так как они тесно взаимосвязаны. Особенно трудно произвести это разделение в том случае, когда одно и то же вещество потребляется и для построения клетки и как энергетический субстрат. Связующие звенья процессов распада и биосинтеза — продукты неполного окисления — ценны для бактерий не только в плане последующего выделения энергии, но и как строительный материал. Поэтому иногда даже не возникает необходимость в глубоком окислении субстрата для получения возможно большего количества энергии. Бактериальная клетка всегда поддерживает гибкий (в зависимости от условий внешней среды) баланс между реакциями катаболизма и анаболизма.
Метаболизм бактерий с различным типом питания
У гетеротрофных бактерий существует два направления использования углерода: часть его входит в состав конечных продуктов катаболизма, а часть — в строительные блоки биосинтетических путей. У аутотрофных микроорганизмов углерод включается только в реакции биосинтеза,образуя различные интермедиаты в результате тех же последовательностей реакций, которые у гетеротрофов приводят к образованию АТФ, но только в обратном направлении. Подтверждение этого принципа можно найти в метаболических путях различных аутотрофных микроорганизмов.
Облигатные хемо- и фотоаутотрофы используют ряд реакций ЦТК. Поскольку эти бактерии неспособны окислять органические соединения, ЦТК у них не играет никакой роли в образовании АТФ. Однако они синтезируют все ферменты ЦТК, кроме а-кетоглутарат дегидрогеназы. Отсутствие этого фермента нарушает цикличность системы, но не влияет на её биосинтетические функции — образование а-кетоглутаровой, янтарной и щавелевоуксусной кислот.
У кишечной палочки, растущей при избытке сахаров за счёт брожения, ЦТК функционирует так же, как у аутотрофов, но цикл нарушен между а-кетоглутаровой и янтарной кислотами. При аэробном же окислении органических соединений индуцируется синтез а-кетоглутарат дегидрогеназы, и цикл функционирует также и в качестве АТФ-образующей системы. Таким образом, при аэробном росте цикл выполняет одновременно дыхательную и биосинтетическую функции.
Пировиноградная кислота как ключевой метаболит
Превращение глюкозы в пировиноградную кислоту, катализируемое ферментами гликолиза, — основной этап катаболизма углеводов в клетках аэробных и анаэробных микроорганизмов. Обратный процесс — превращение пировиноградной кислоты в глюкозу — центральный путь биосинтеза моно- и полисахаридов. Таким образом, пировиноградная кислота занимает центральное место в обмене веществ у бактерий и в равной степени служит целям ассимиляции и диссимиляции. Особую ценность имеет свойство пирувата постепенно высвобождать энергию в ходе последовательных реакций катаболизма. При этом пировиноградная кислота служит энергетическим субстратом не только при распаде углеводов, но и белков, так как окислительное дезаминирование аминокислот приводит к образованию кетокислот, а также пирувата. В пластическом обмене пируват служит источником синтеза углеводов, белков, жиров и др. Таким образом, пировиноградная кислота или любое соединение, превращение которого ведёт к образованию пирувата, может быть единственным органическим веществом, обусловливающим рост и развитие разнообразных бактерий.
Активированные формы метаболических интермедиатов
АТФ может служить донором фосфатной группы для множества промежуточных продуктов обмена (интермедиатов), переводя их в активированную форму. Стандартная свободная энергия (AG) интермедиатов при этом повышается настолько, что позволяет им в фосфорилированной форме участвовать в термодинамически выгодных процессах (-AG). В то же время подобная реакция с участием нефосфорилированной формы реагирующего вещества была бы термодинамически невыгодной (+ДО). Фосфорилирование гексоз— первый этап как в процессах синтеза полимерных углеводов, так и при катабояическом разложении сахаров.Таким образом, перед фосфорилированным углеводом всегда стоят две взаимоисключающие возможности — быть трансформированным в компонент цитоплазмы (полисахарид), либо быть разложенным на более простые вещества. Эта равнонаправленная потенция ключевых интермедиатов в фосфорилированной форме предоставляет клетке ещё одну возможность сбалансированной регуляции путей катаболизма и биосинтеза.
Регуляция метаболизма
Метаболизм микроорганизмов прежде всего регулируется факторами внешней среды. Так, кислород подавляет брожение; у денитрифицирующих бактерий нитратное дыхание может начаться лишь при недостатке кислорода; изменение pH в культурах Enterobacterи Clostridium влияет на природу образующихся продуктов брожения и прочее. Многообразие обменных процессов требует их хорошей координации. Только в этом случае клетка может приспосабливаться к меняющимся условиям внешней среды и оптимально согласовывать между собой различные метаболические процессы. Объектами такой оптимизации выступают ферменты. Регуляция клеточного метаболизма происходит на двух уровнях — на уровне синтеза ферментов и на уровне изменения их активности.
Существует два класса аллостерических белков: аллостерические ферментыи регуляторные аллостерические белки.Последние лишены каталитической активности и регулируют синтез определённых ферментов путём присоединения к бактериальной хромосоме вблизи соответствующих генов, активность которых находится под контролем этих белков. Связывание регуляторных аллостерических белков с молекулами-эффекторами приводит к изменению скорости синтеза мРНК, кодируемых этими генами (регуляция на уровне синтеза ферментов). Регуляция на уровне изменения активности свойственна, как правило, только ключевым ферментам клеточного метаболизма, которые обычно образуются вне зависимости от условий среды.
