Введение
Возникновение на Земле живой материи обусловило возможность беспрерывной циркуляции в биосфере химических элементов, перехода их из внешней среды в организмы и обратно. Эта циркуляция химических элементов и получила название биогеохимических круговоротов. Биогеохимический круговорот представляет собой часть биотического круговорота, включающую обменные циклы химических элементов абиотического происхождения, без которых не может существовать живое вещество (углерод, кислород, водород, азот, фосфор, сера и многие другие). Обычно выделяют три основных типа биогеохимических круговоротов: круговорот воды, круговороты газообразных веществ с резервным фондом в атмосфере или гидросфере (океан), осадочные циклы химических элементов с резервным фондом в земной коре.
В.И.Вернадский выделяет пять функций биогенных элементов: газовую, концентрационную, окислительновосстановительную, биохимическую и биогеохимическую деятельность человека. Последняя функция в настоящее время все больше охватывает разрастающееся количество веществ земной коры, в том числе таких концентраторов углерода, как уголь, нефть, газ и других, для хозяйственных и бытовых нужд человека
Биогеохимические циклы наиболее важных биогенных элементов.
К ним можно отнести вещества, из которых состоят белковые молекулы. К ним относятся углерод, сера, фосфор, азот, кислород.
В круговороте углерода, а точнее – наиболее подвижной его формы – СО2,четко прослеживается трофическая цепь: продуценты, улавливающие углерод из атмосферы при фотосинтезе, консументы – поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов – возвращающих углерод вновь в круговорот. Скорость оборота СО2составляет порядка 300 лет (полная замена его в атмосфере).
В мировом океане трофическая цепь: продуценты (фитопланктон) – консументы (зоопланктон, рыбы) – редуценты (микроорганизмы) – осложняется тем, что некоторая часть углерода мертвого организма, опускаясь на дно, «уходит» в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте.
Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2/3 его запаса в атмосфере.(1) В биомассе лесов содержится в 1,5 раза, а в гумусе, содержащемся в почве, в 4 раза больше СО2, чем в атмосфере.
Фотосинтезирующий «зеленый пояс» Земли и карбонатная система моря поддерживают постоянный уровень СО2 в атмосфере. Однако стремительное увеличение потребления горючих ископаемых, а также уменьшение поглотительной способности «зеленой пояса» приводят к тому, что содержание СО2 в атмосфере постепенно растет. Предполагают, что если уровень СО2 в атмосфере будет превышен вдвое (до начала активного влияния человека на окружающую среду он составлял 0,29%), то не исключено повышение глобальной температуры на 1,54,5°С. Это может привести к таянию ледников и как следствие – к повышению уровня Мирового океана, а также к неблагоприятным последствиям в сельском хозяйстве. В настоящее время в развитых государствах существует национальная научноисследовательская программа по ведению сельского хозяйства на случай потепления или похолодания климата.
С наступлением научнотехнического прогресса сбалансированные прежде потоки углерода между атмосферой, материками и океанами начинают поступать в атмосферу в количестве, которое не полностью может связаться растениями.
Помимо СО2 в атмосфере в небольших количествах присутствуют оксид углерода СО – 0,1 части на миллион и метан СН4 1,6 части на миллион. Они образуются при неполном или аэробном разложении органического вещества и в атмосфере окисляются до СО2.
Накопление СО в глобальном масштабе не представляется реальным, но в городах, где воздух застаивается, имеет место повышение концентрации этого соединения, что негативно влияет на здоровье людей.
На суше он начинается с фиксации диоксида углерода растениями в процессе фотосинтеза с образованием органических веществ и побочным выделением кислорода. Часть связанного углерода выделяется во время дыхания растений в составе СО2
Почвенные грибы в зависимости от скорости роста выделяют от 200 до 2000 см3 СО2 на 1 г сухой массы. Немало диоксида углерода выделяют бактерии, которые в пересчете на живую массу дышат в 200 раз интенсивнее человека. Диоксид углерода выделяется также корнями растений и многочисленными живыми организмами. Микроорганизмы разлагают отжившие растения и погибших животных, в результате чего углерод мертвого органического вещества окисляется до диоксида углерода и снова попадает в атмосферу.
Между сушей и Мировым океаном постоянно идут процессы миграции углерода, в которых преобладает вынос его в форме карбонатных и органических соединений с суши в океан. Из Мирового океана на сушу углерод поступает в незначительных количествах в форме СО2, выделяемого в атмосферу. Углекислый газ атмосферы и гидросферы обменивается и обновляется живыми организмами за 395 лет.
Круговорот кислорода. Скорость его – 2 тыс. лет. Именно за это время весь кислород атмосферы проходит через живое вещество. Основной его поставщик на Земле – зеленые растения. Ежегодно они производят на суше 53*10 т кислорода, а в океанах – 414*10т.
Главный потребитель кислорода – животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.
Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, повидимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Подсчитано, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который высвобождается в процессе фотосинтеза. Предполагается, что в ближайшее время весь продуцированный кислород будет сгорать в топках, а следовательно, необходимо значительное усиление фотосинтеза и другие радикальные меры.
Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.
В круговороте кислорода отчетливо выражены активная геохимическая деятельность живого вещества, его первостепенная роль в этом процессе. Биогеохимический цикл кислорода является планетарным процессом, который связывает атмосферу и гидросферу с земной корой. Ключевые звенья этого круговорота: образование свободного кислорода при фотосинтезе в зеленых растениях, потребление его для осуществления дыхательных функций всеми живыми организмами, для реакции окисления органических остатков и неорганических веществ (например, сжигания топлива) и другие химические преобразования, ведущие к образованию таких окисленных соединений, как диоксид углерода и вода, и последующему вовлечению их в новый цикл фотосинтетических превращений.
Следует также учитывать использование кислорода для процесса горения И других видов антропогенной деятельности. Предполагается, что в обозримой перспективе ежегодное суммарное потребление кислорода достигнет 210...230 млрд. т. Между тем ежегодное продуцирование этого газа всей фитосферой составляет 240 млрд. т.
Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Опасность заключается в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям.
Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только 12 их видов, участвующих в круговороте азота, жизнь на Земле прекратится.(1)
Благодаря механизмам обратной связи, обеспечивающим саморегуляцию, круговорот азота можно назвать относительно замкнутым, если рассматривать его в масштабе крупных площадей или всей биосферы.
В современных условиях человек своей деятельностью оказывает значительное влияние на круговорот азота: увеличивает содержание азота в резервном фонде (сжигание ископаемого топлива, осушение заболоченных земель, обработка почвы и т.д.) и снижает его содержание (выращивание бобовых культур на громадных территориях, техническое связывание азота) в атмосфере.(2).
Так же, как круговорот углерода и другие круговороты, охватывает все области биосферы. В круговороте соединений азота ключевое значение принадлежит микроорганизмам: азотфиксаторам, нитрификаторам и денитрификаторам. Другие же организмы оказывают влияние на круговорот азота лишь после того, как он войдет в состав их клеток. Как известно, бобовые и представители некоторых родов других сосудистых растений (например, ольха, араукария, лох) фиксируют азот с помощью бактерий-симбионтов. То же наблюдается и у некоторых лишайников, фиксирующих азот с помощью симбиотических сине-зеленых водорослей. Очевидно, что биологическая фиксация молекулярного азота свободноживущими и симбиотическими организмами происходит и в автотрофном, и в гетеротрофном звеньях экосистем.
Из огромного запаса азота в атмосфере и осадочной оболочке литосферы в круговороте его участвует только фиксированный азот, усваиваемый живыми организмами суши и океана. В категорию обменного фонда этого элемента входят: азот годичной продукции биомассы, азот биологической фиксации бактериями и другими организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный
Нетрудно заметить, что, за исключением растительности тундры, где содержание азота и зольных элементов примерно одинаково, в растительности почти всех других типов масса азота в 2... 3 раза меньше массы зольных элементов. Количество элементов, оборачивающихся в течение года (т.е. емкость биологического круговорота), наибольшее в тропических лесах, затем в черноземных степях и широколиственных лесах умеренного пояса (дубравах).
Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.
Круговорот серы и фосфора – типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.
Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала – апатита.
Общий круговорот фосфора можно разделить на две части – водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка – морских птиц. Их экскременты снова попадают в море и вступают в круговорот или накапливаются на берегу и смываются в море.
Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глулин и заключенный в них фосфор снова попадает в осадочные породы.
В наземных экосистемах фосфор извлекают растения из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно, что может привести к истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и т.д.). Следовательно, надо стремиться избежать этих потерь и не ожидать того времени, когда Земля вернет на сушу «потерянные отложения».
Значительные количества фосфора вносятся на поля с удобрениями. Около 60 тыс. т фосфора ежегодно возвращается на материк с выловом рыбы. В белковом рационе человека рыба составляет от 20% до 80%, некоторые малоценные сорта рыб перерабатываются на удобрения, богатые полезными элементами, в том числе фосфором. Ежегодная добыча фосфорсодержащих пород составляет 1,52 млн т.(4). Деятельность человека ведет к усиленной потере фосфора, что делает круговорот недостаточно замкнутым. Важность фосфора как элемента, обеспечивающего продуктивность биосферы, со временем будет возрастать, так как уже сейчас он причисляется к редким макроэлементам. Поэтому возврат фосфора в круговорот имеет важное значение для человечества.(2).
Сера также имеет основной резервный фонд в отложениях и почве, но в отличие от фосфора у нее есть резервный фонд и в атмосфере. В обменном фонде главная роль принадлежит микроорганизмам, одни из них восстановители, другие – окислители.
В горных породах сера встречается в виде сульфидов, в растворах – в виде сульфатиона, в газообразной фазе в форме сероводорода или сернистого газа. В некоторых организмах сера накапливается в чистом виде и при их отмирании на дне образуются залежи самородной серы.
Круговорот серы, хотя ее требуется организмами в небольших количествах, является ключевым в общем процессе продуцирования и разложения.
В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до Н2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы – так продолжается круговорот.
Однако круговорот серы, как и азота, может быть нарушен вмешательством человека. Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ нарушает процессы фотосинтеза и приводит к гибели растительности.
