Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kacman F.M. - Teoriya i ustroystvo sudna - 1991.doc
Скачиваний:
5
Добавлен:
01.07.2025
Размер:
772.61 Кб
Скачать

§ 10. Построение диаграммы статической остойчивости и практическое ее использование

Задача о построении диаграммы статической остойчивости с ис­пользованием ЭВМ при максимальной автоматизации ввода исходных данных в принципе решена. Однако в настоящее время до осуществле­ния массового (серийного) изготовления бортовых ЭВМ с соответ­ствующими устройствами и снабжения ими судов морского флота для построения диаграмм статической остойчивости могут служить в ка­честве вспомогательных материалов интерполяционные кривые плеч остойчивости формы, пантокарены и универсальные диаграммы остой­чивости, содержащиеся в комплекте судовой документации.

Интерполяционные кривые плеч остойчивости формы и пантока­рены. При заданных обводах корпуса плечи формы lф можно рассмат­ривать как функцию двух переменных - объемного водоизмещения V и угла крена θ:

lф = f(V,θ). (2.75)

Если в уравнении (2.75) положить θ = θi = const, плечо формы ста­новится функцией одного переменного lф=f(V). Кривые lф=f(V) называют интерполяционными кривыми плеч остойчивости формы. Их строят в конструкторских бюро для ряда углов крена от 0 до 90° (с ин­тервалами 10°) для водоизмещении, лежащих в пределах, представ­ляющих практический интерес, т.е. от водоизмещения порожнего судна Vnop до водоизмещения судна с полным грузом Vгр (рис. 2.26).

С помощью интерполяционных кривых плеч остойчивости формы можно построить диаграмму статической остойчивости судна для любого состояния его нагрузки. Для этого на оси абсцисс интерполя­ционных кривых откладывают точку, соответствующую данному водоизмещению, восставляют в ней перпендикуляр и снимают с кри­вых значения lф для углов крена 10°, 20° и т. д. Дальнейшее вычисле­ние плеч статической остойчивости производят по формуле

l = lф – a sin θ = lф – (zg-zc)sin θ (2.76)

При этом аппликату ЦТ судна zg находят из расчета нагрузки, отвечаю­щей данному водоизмещению, а аппликату ЦВ zc - по соответствую­щей кривой, имеющейся в документе “Кривые элементов теоретичес­кого чертежа”. После определения всех плеч формы строят кривую lф и синусоиду α sin θ, разности ординат которых являются плечами ста­тической остойчивости (рис. 2.27).

Если плечи остойчивости формы lф отсчитываются от полюса Ε (см. рис. 2.21), то соответствующие кривые lф =f(V) носят название пантокарен. При помощи пантокарен диаграммы статической остойчивости строят так же, как при помощи кривых плеч остойчивости формы.

Универсальная диаграмма статической остойчивости. Для быстро­го построения диаграммы статической остойчивости в судовых усло­виях наряду с интерполяционными кривыми плеч остойчивости формы и пантокаренами используют универсальную диаграмму остой­чивости, которую чертят в конструкторском бюро и включают в со­став вспомогательных материалов для самостоятельных расчетов, содержащихся в Информации об остойчивости.

Различными авторами были предложены различные формы универ­сальной диаграммы, включаемой в Типовую информацию об остойчи­вости и прочности грузового судна, при использовании которой исход­ными данными являются фактический дедвейт судна и начальная метацентрическая высота судна при данном состоянии его нагрузки.

Рис. 2.26. Пантокарены Рис. 2.27. Построение диаграм­мы статической остойчивости с помощью пантокарен

Теоретические основы универсальной диаграммы статической остойчивости заключаются в следующем: к выражению (2.76) для плеча статической остойчивости прибавляют и одновременно вычитают из него одну и ту же величину hcpsin θ и, принимая во внимание, что a=r-h, представляют это выражение в следующей форме:

l = lф – (r - h)sin θ + hcpsin θ - hcpsin θ (2.77)

где hcp - некоторое произвольное приблизительно среднее для дан­ного судна значение начальной метацентрической высоты. Если положить

= lфr sin θ + hcpsin θ (2.78)

l`в = (h - hcp) sin θ (2.79)

то выражение (2.77) принимает вид

l= l`ф + l`в (2.80)

При некотором заданном угле крена θ первое слагаемое - услов­ное плечо формы l`ф - зависит только от формы подводного объема данного судна, а следовательно, от его водоизмещения или дедвейта, а второе слагаемое - условное плечо веса l`в - только от его начальной метацентрической высоты.

При построении универсальной диаграммы вычерчивают два се­мейства кривых: условных плеч формы l`ф для ряда значений дедвейта судна и условных плеч веса l`в для ряда значений начальной метацен­трической высоты от h = 0 до некоторого ее значения, которое для данного судна является наибольшим (рис. 2.28). Для того чтобы кри­вые l`в представляли собой не синусоиды, а пучок прямых линий, выходящих из начала координат (что упрощает построение диаграм­мы), шкалу углов крена принимают синусоидальной, т. е. на оси абсцисс диаграммы наносят деления, расстояния которых от начала координат пропорциональны не углам крена, а синусам этих углов.

Диаграмма статической остойчивости для любого заданного зна­чения дедвейта и любой метацентрической высоты видна непосред­ственно на универсальной диаграмме. Например, на рис. 2.28 показа­на жирной линией диаграмма статической остойчивости для Δw = 4600 т и h = 0,7 м при hср = 1,0 м. При желании эту диаграмму можно легко перестроить в обычную форму, откладывая плечи остойчивости от горизонтальной оси и пользуясь обычной шкалой углов крена.

Рис. 2.28. Универсальная диаг­рамма статической остойчи­вости

Практическое использование диаграммы статической остойчивос­ти. Диаграмму статической остойчивости, построенную для данного состояния нагрузки судна, во-первых, используют для того, чтобы подтвердить выполнение требований Регистра СССР к остойчивости судна на больших углах крена, изложенных ниже. Такое подтвержде­ние может стать необходимым в тех случаях, когда нагрузка судна не соответствует типовой (предусмотренной Информацией об остой­чивости) и его остойчивость вызывает сомнения.

Рис. 2.29. Применение диаграм­мы статической остойчивости для определения угла крена судна при горизонтально-попе­речном переносе груза

Во-вторых, с помощью диаграммы статической остойчивости может быть определен крен судна тогда, когда метацентрическая формула, при­годная только для малых углов крена, оказывается неприменимой. Для нахождения угла крена на диаграмме статической остойчивости строят кривую кренящего момента Мкр =f(θ) или кренящего плеча lкp = Mкp/P= f(θ). Точки пересечения этой кривой с диаграммой остойчи­вости определят положения устойчивого и неустойчивого равновесий судна. Например, кренящее плечо при горизонтально-поперечном переносе груза на расстояние у2у1 выражается зависимостью

lкр=Р(y2-y1)со/Р. (2.81)

Углу статического крена θ1 (положение устойчивого равновесия) будет соответствовать точка А пересечения косинусоиды (2.81) с диаг­раммой остойчивости (рис. 2.29). Точка В определит угол θ2, отвечаю­щий положению неустойчивого равновесия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]