- •42 Тус, Кацман. 00Набор текста – Борискин Олег, oboriskin@mail.Ru
- •Глава 1 плавучесть судна § 1. Геометрия корпуса судна
- •§ 2. Плавучесть судна
- •Глава 2 остойчивость судна § 3. Начальная остойчивость судна
- •§ 4. Определение начальной остойчивости опытным путем
- •§ 5. Влияние переноса, приема или снятия твердых и жидких грузов на посадку и начальную остойчивость судна
- •§ 6. Нейтральные плоскости
- •§7. Влияние приема или снятия большого груза на посадку и начальную остойчивость судна
- •§ 8. Остойчивость судна при посадке на мель
- •§ 9. Остойчивость на больших углах наклонения
- •§ 10. Построение диаграммы статической остойчивости и практическое ее использование
- •§11. Динамическая остойчивость
- •§ 12. Кренящий момент при статическом и динамическом давлении ветра
- •§ 13. Требования Регистра ссср к остойчивости морских судов
- •§ 14. Требования к Информации об остойчивости судна для капитана
- •Глава 3 непотопляемость судна § 15. Основные понятия и определения
- •§ 16. Принципы обеспечения непотопляемости
- •Глава 11 прочность корпуса судна § 76. Внешние силы и напряжения в корпусе судна
- •§ 77. Контроль общей продольной прочности судна в эксплуатации
- •§ 81. Технико-эксплуатационные характеристики морских судов
§ 77. Контроль общей продольной прочности судна в эксплуатации
При типовых случаях нагрузки транспортных судов длиной L ≥ 80 м, приводимых в Информации об остойчивости и прочности судна для капитана, общую прочность его корпуса можно считать обеспеченной. Поэтому необходимость проверки общей прочности упомянутых транспортных судов в эксплуатации может возникнуть при загрузке трюмов, отличной от типовых случаев, с большой неравномерностью распределения груза по длине судна (например, при загрузке концевых трюмов и отсутствии груза в средних или, наоборот, при загрузке средних трюмов и отсутствии груза в концевых трюмах), а также для выяснения возможности выполнения грузовых операций в порту или на рейде в требуемой последовательности.
Напряженное состояние корпуса судна определяется изгибающим моментом и перерезывающей силой, действующими на судно в различных его поперечных сечениях. Для сухогрузных судов, перевозящих генеральные, лесные и легкие сыпучие грузы, обычно ограничиваются проверкой общей прочности по изгибающему моменту, действующему в миделевом сечении судна. Для танкеров, а также для судов, предназначенных для перевозки тяжелых навалочных грузов (например, рудовозов), как правило, необходима (в зависимости от возможных случаев нагрузки и по согласованию с Инспекцией Регистра) проверка общей прочности по изгибающим моментам и перерезывающим силам, действующим в нескольких поперечных сечениях корпуса.
Полные изгибающий момент и перерезывающая сила при данном состоянии нагрузки судна складываются из изгибающего момента и перерезывающей силы на тихой воде и дополнительных изгибающего момента и перерезывающей силы от морского волнения, которые практически одинаковы при различных осадках судна. Поэтому без большой погрешности допустимо оценивать и проверять напряженное состояние корпуса судна по значению изгибающего момента MT.B и перерезывающей силы QT.B на тихой воде. Такое допущение предусмотрено в Правилах Регистра СССР.
Типовая информация об остойчивости и прочности грузового морского судна содержит специальные диаграммы контроля прочности, по которым общая прочность судна может быть проверена для любого состояния его нагрузки и в любых условиях его эксплуатации (в рейсе, на рейде, в порту). Каждую такую диаграмму (рис. 11.5) строят в конструкторском бюро на основе формул, приводимых в Правилах Регистра СССР. Поскольку значения моментов сопротивления и площади поперечного сечения продольных связей для каждого конкретного судна известны, эти формулы дают возможность вычислить максимальные допустимые значения Мт.в и QT.B.
Рис.
11.5. Диаграмма контроля общей продольной
прочности
При наличии диаграммы контроля общей продольной прочности судна по изгибающему моменту или перерезывающей силе, построенной по уравнениям (11.22)-(11.23), проверку прочности в данном поперечном сечении осуществляют в следующем порядке.
1. Определяют дифферент судна dн – dк .
2. В табличной форме рассчитывают дедвейт судна Δw и сумму +МХ положительных моментов части дедвейта, расположенной в нос от данного поперечного сечения (табл. 11.2).
3. На диаграмме контроля общей продольной прочности (см. рис. 11.5) откладывают значение дедвейта Δw (на рисунке Δw = 7000 т). От полученной точки переходят по наклонной прямой к горизонтали, отвечающей найденному ранее дифференту судна (в данном примере dн- dK = -2м). Через найденную точку проводят вертикаль, на которой откладывают сумму моментов +МХ и ставят точку А.
Таблица 11.2. Расчет изгибающего момента от грузов, входящих в дедвейт
Дифферент ...... ... м |
Р,т |
+ Мх, кН·м |
Судовые запасы |
|
|
Перевозимый груз |
|
|
Балласт |
|
|
Суммы |
|
|
Расчетная |
|
|
Допустимая от |
|
|
(в рейсе) до |
|
|
Прочность корпуса считается достаточной, если точка А находится в безопасной зоне, т. е. для плавания в рейсе, когда она лежит между линиями «Опасно-перегиб в рейсе» и «Опасно-прогиб в рейсе». Если точка А лежит за этими линиями, но между линиями «Опасно- перегиб на рейде» и «Опасно-прогиб на рейде», то прочность достаточна только для погрузки-разгрузки на рейде и т. д.
Допустимые значения суммы +МХ определяют по точкам пересечения вертикали для заданного дедвейта и дифферента с соответствующими границами и заносят в табл. 11.2.
