- •Вариант 1
- •Задание по математической статистике
- •Вариант 2
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 3
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 4
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 5
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 6
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 7
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 8
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 9
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 10
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 11
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 12
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 14
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 15
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 16
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 17
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 18
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 19
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 20
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 21
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 22
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 23
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 24
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 25
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 27
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 29
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 30
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 31
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 32
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 33
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 34
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 41
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 42
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 43
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 44
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 45
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 46
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 48
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 49
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 51
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 52
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 53
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 54
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 56
- •Задание по математической статистике
- •3. Найдите выборочным методом:
- •Вариант 60
- •Задание по математической статистике
- •3. Найдите выборочным методом:
Задание по математической статистике
1. Взяв l=1, постройте статистическую модель случайного вектора в виде
,
.
2.
Найдите эмпирические законы распределения
и
.
Проверьте гипотезу о согласованности
и
по
критериям Колмогорова и Пирсона, приняв
в качестве гипотетического закона
распределения
нормальный закон распределения с
параметрами
,
.
Нарисуйте графики , и на одном рисунке, и - на другом.
3. Найдите выборочным методом:
для
,
,
,
в предположении, что истинные законы распределения неизвестны, а функция регрессии линейна. Являются ли найденные оценки состоятельными? Исследуйте на несмещенность и асимптотическую несмещенность. Являются ли асимптотически нормальными и при каких условиях? Сравните оценки с соответствующими теоретическими значениями. Графики эмпирической и теоретической функций регрессии нарисуйте на одном рисунке.
4.
Найдите оценки
и
для закона распределения
.
Сравните их с теоретическими значениями.
Выясните свойства оценок.
5.
Для параметра
постройте верхний доверительные
интервал надежности
.
Перейдите от найденного доверительного
интервала к доверительному интервалу
для
.
Накрывают ли эти интервалы теоретические
значения параметров?
6. Постройте критерий для проверки гипотез
Возьмите
,
.
Найдите функцию мощности и постройте
ее график.
Вариант 4
Рассматривается случайный вектор , причем
, 1<
z
< u
<
,
параметр с > 0.
Задание по математической статистике
1. Взяв с=3.5, постройте статистическую модель случайного вектора в виде
, .
2. Найдите эмпирические законы распределения и . Проверьте гипотезу о согласованности и по критериям Колмогорова и Пирсона, приняв в качестве гипотетического закона распределения истинный закон распределения с параметром
Нарисуйте графики , и на одном рисунке, и на другом.
3. Найдите выборочным методом:
для ,
,
,
в предположении, что истинные законы распределения неизвестны, а функция регрессии линейна. Являются ли найденные оценки состоятельными?
Исследуйте на несмещенность и асимптотическую несмещенность. Являются ли асимптотически нормальными и при каких условиях? Сравните оценки с соответствующими теоретическими значениями. Графики эмпирической и теоретической функций регрессии нарисуйте на одном рисунке.
4. Найдите оценки , для параметра закона распределения . Сравните их с теоретическим значением с. Выясните свойства оценок.
5. Для параметров с и постройте нижние доверительные интервалы надежности . Накрывают ли эти интервалы истинные характеристики?
6. Постройте критерий для проверки гипотез
. Возьмите , . Найдите функцию мощности и постройте ее график.
Вариант 5
Рассматриваются независимые случайные величины
,
,
Задание по математической статистике
1. Взяв
,
постройте статистические модели
случайных величин x
,h
и
в виде
,
2.
Найдите эмпирические законы распределения
и
.
Проверьте гипотезу о согласованности
и
по
критериям Колмогорова и Пирсона, приняв
в качестве гипотетического закона
распределения
ее истинный закон распределения с
. Нарисуйте
графики
и
на
одном рисунке,
и
- на другом.
