- •Третий закон Ньютона
- •Центр масс. Теорема о движении центра масс.
- •Движение тела переменной массы. Уравнение Мещерского.
- •Движение в центральном поле сил. Законы Кеплера и закон всемирного тяготения.
- •Консервативные и неконсервативные силы. Работа консервативных сил. Потенциальная энергия.
- •Связь между силой и потенциальной энергией. Потенциальные энергии силы тяжести, силы упругости и силы гравитационного взаимодействия.
- •Механическая работа и кинетическая энергия. Механическая энергия системы тел. Закон сохранения механической энергии.
- •Соударение двух тел. Абсолютно упругий и абсолютно неупругий удар.
- •Момент импульса и момент силы относительно неподвижного начала. Уравнение моментов.
- •Уравнение моментов. Закон сохранения момента импульса.
- •Момент импульса и момент силы относительно неподвижной оси. Уравнение динамики вращательного движения относительно неподвижной оси.
- •Инерция при вращательном движении. Момент инерции. Кинетическая энергия твердого тела при вращательном движении.
- •Моменты инерции симметричных тел (цилиндр, шар). Теорема Штейнера. Пример применения.
- •Гармонические колебания. Основные характеристики гармонических колебаний: амплитуда, фаза, частота, период.
- •Гармонический осциллятор. Уравнение динамики гармонических колебаний. Примеры гармонических осцилляторов: пружинный, физический и математический маятники.
- •Затухающие колебания. Коэффициент затухания, время релаксации. Логарифмический декремент затухания.
- •29 Принцип суперпозиции. Интерференция волн. Стоячие волны.
Связь между силой и потенциальной энергией. Потенциальные энергии силы тяжести, силы упругости и силы гравитационного взаимодействия.
Потенциальная энергия — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил Ep = mgh, Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.
Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением.
Примерами консервативных (потенциальных) сил являются: сила тяжести, сила упругости
Механическая работа и кинетическая энергия. Механическая энергия системы тел. Закон сохранения механической энергии.
Кинети́ческая
эне́ргия — энергия механической
системы, зависящая от скоростей движения
её точек. Часто выделяют кинетическую
энергию поступательного и вращательного
движения. Единица измерения в системе
СИ — Джоуль.
Механическая
работа — это физическая величина,
являющаяся скалярной количественной
мерой действия силы или сил на тело или
систему, зависящая от численной величины
и направления силы(сил) и от перемещения
точки(точек) тела или системы. Измерения
в Дж.
Закон сохранения механической энергии утверждает, что если тело или система подвергается действию только консервативных сил, то полная механическая энергия этого тела или системы остаётся постоянной. В изолированной системе, где действуют только консервативные силы, полная механическая энергия сохраняется.[3]
В физике механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергии, имеющихся в компонентах механической системы.
Соударение двух тел. Абсолютно упругий и абсолютно неупругий удар.
Уда́р — толчок при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь
Абсолютно упругий удар — соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно
Абсолю́тно неупру́гий удар — удар, в результате которого компоненты скоростей тел становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.
Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Энергия, конечно же, никуда не исчезает, а переходит в тепловую.
