- •1. Основы математической логики
- •1.1. Понятие составного высказывания
- •1.2. Логические операции над высказываниями
- •1.3. Логические отношения
- •1.4. Варианты импликации
- •1.5. Основные законы, определяющие свойства логических операций
- •1.6. Понятие булевой функции
- •1.7. Основные свойства элементарных булевых функций
- •1.8. Дизъюнктивные и конъюнктивные нормальные формы алгебры логики
- •Алгоритм построения
- •1.9. Совершенная дизъюнктивная и совершенная конъюнктивная нормальные формы
- •1.10. Многочлены Жегалкина
- •2. Множества и отображения
- •2.1. Понятие множества
- •2.2. Способы задания множеств
- •2.3. Подмножества
- •2.4 Операции над множествами
- •2.5. Соотношение между множествами и составными высказываниями
- •2.6. Соотношение между высказываниями и соответствующими им множествами истинности
- •2.7 Абстрактные законы операций над множествами
- •2.8. Кортежи и декартовое произведение множеств
- •2.9. Бинарные отношения
- •2.10. Отображение множеств
- •2.11. Функции
- •3. Логика предикатов или логика первого порядка
- •3.1. Предикаты
- •3.2. Применение предикатов в алгебре
- •3.3. Булева алгебра предикатов
- •3.4. Кванторы
- •3.5. Формулы логики предикатов
- •3.6. Равносильные формулы логики предикатов
- •3.7. Приведённые и нормальные формы в логике предикатов
- •3.8. Исчисление предикатов
- •4. Элементы теории алгоритмов
- •4.1. Вычислимые функции и алгоритмы
- •4.2. Свойства алгоритмов
- •4.3. Понятия разрешимого предиката, разрешимого множества, перечислимого множества
- •4.4. Пример алгоритма
- •4.5. Интуитивное понятие алгоритма
- •4.6.Теория рекурсивных функций. Простейшие функции
- •4.7. Операторы
- •4.8. Примитивно рекурсивные функции
- •4.9. Частично рекурсивные функции
- •4.10. Примитивно-рекурсивные предикаты
- •4.11. Нормальный алгоритм Маркова: основные понятия
- •4.12. Проблема слов в ассоциативном исчислении
- •4.13. Алгоритм в некотором алфавите а
- •4.14. Понятие нормального алгоритма
- •5. Примеры решения типовых задач. Задания для самостоятельного решения
- •5.1. Булевы функции. Таблицы истинности
- •Задания для самостоятельного решения
- •5.2. Равносильность булевых функций
- •Задания для самостоятельного решения
- •5.3. Преобразование булевых функций
- •Задания для самостоятельного решения
- •5.4. Функциональная полнота
- •Задания для самостоятельного решения
- •5.5. Булева алгебра. Нормальные формы
- •Задания для самостоятельного решения
- •5.6. Минимальные формы
- •Задания для самостоятельного решения
- •5.7. Алгебра Жегалкина
- •Задания для самостоятельного решения
- •5.8. Алгебра высказываний
- •Задания для самостоятельного решения
- •5.9. Предикаты
- •Задания для самостоятельного решения
- •5.10. Исчисление высказываний
- •Задания для самостоятельного решения
- •Список рекомендуемой литературы
2.4 Операции над множествами
В первой главе были рассмотрены способы, которыми из данных высказываний могут быть образованы новые высказывания. Теперь мы будем рассматривать аналогичный процесс — образование новых множеств из данных множеств. Мы будем предполагать, что каждое из множеств, которое мы используем в этом процессе, является подмножеством некоторого универсального множества, и будем требовать, чтобы вновь образованное множество было подмножеством того же самого универсального множества. Как и всегда, мы можем задавать вновь образованное множество или путем описания, или путем перечисления.
Следует провести аналогию между логическими операциями и операциями над множествами.
Отрицание |
Дополнение |
Конъюнкция |
Пересечение |
Дизъюнкция |
Объединение |
Импликация |
Разность |
Чтобы нагляднее представить эти операции, изобразим их на диаграмме, называемой диаграммой Эйлера-Венна. Пусть прямоугольник обозначает универсальное множество, а круги внутри прямоугольника — подмножества.
Чтобы нагляднее представить эти операции, изобразим их на диаграмме, называемой диаграммой Эйлера-Венна. Пусть прямоугольник обозначает универсальное множество, а круги внутри прямоугольника — подмножества.
Дополнением
к
множеству А называется множество
элементов, которые не содержатся в
А. Обозначают
его
и читают «дополнение множества А
к U».
Пересечением множеств A и В называется множество элементов, принадлежащих и А и В. Обозначают A∩B и читают «пересечение А и B».
Если А и В — непустые множества, пересечение которых пусто, т. е. A∩B=Ø, то их называют непересекающимися множествами.
Объединением множестве и В называется множество элементов, принадлежащих либо А, либо В (либо обоим). Обозначают A ∪ В и читают «объединение А и В».
Разностью множестве и В называется множество элементов, принадлежащих А и не принадлежащих В. Обозначают A\B и читают «разность A и B».
2.5. Соотношение между множествами и составными высказываниями
Существует тесная связь между множествами — с одной стороны, и высказываниями — с другой, а также между операциями над множествами, с одной стороны, и операциями образования составных высказываний — с другой.
Если рассматривается несколько высказываний, то сопоставить каждому из этих высказываний некоторое множество можно вполне логичным путем. Сначала мы образуем множество всех логических возможностей для рассматриваемых высказываний и назовем его универсальным множеством. Затем каждому высказыванию мы поставим в соответствие подмножество тех логических возможностей универсального множества, для которых это высказывание истинно.
Определение. Пусть X,Y,Z,... означают некоторые высказывания, и пусть U — их множество логических возможностей. Пусть А,В,С,... означают подмножества U, для которых истинны соответственно высказывания X,Y,Z,.... Тогда А, B, С,... называются соответственно множествами истинности высказываний X, У, Z,....
Если X и Y — высказывания, то Х∨Y и Х∧У также высказывания, и, следовательно, они должны иметь множества истинности.
Чтобы найти множество истинности высказывания X∨Y, заметим, что это высказывание истинно, когда истинно X или истинно Y (или оба). Таким образом, высказыванию X∨Y мы должны поставить в соответствие те логические возможности, которые лежат в А или в В (или в них обоих); иначе говоря, мы должны поставить в соответствие X∨Y множество A∪B. С другой стороны, высказывание X∧Y истинно, только когда истинно и X и Y, так что высказыванию X∧Y мы должны поставить в соответствие множество А ∩ В.
Итак, существует тесная связь между логической операцией дизъюнкцией и операцией объединения множеств, а также между конъюнкцией и пересечением. А также между логической операцией отрицания и операцией дополнения множества, т. е. множеством истинности для X будет А.
Связь между высказыванием и его множеством истинности создает возможность «перевода» любой задачи, относящейся к составным высказываниям, в задачу теории множеств.
Возможно также и обратное: если поставлена какая-то задача, касающаяся множеств, то универсальное множество можно себе представить как некоторое множество логических возможностей, подмножества которого являются множествами истинности некоторых высказываний.
Следовательно, задачу, относящуюся к множествам, можно также «перевести» на язык составных высказываний.
