Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Uchebnoe_posobie.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.47 Mб
Скачать

1.10. Многочлены Жегалкина

Согласно сформулированным утверждениям, можно говорить, что система булевых функций полна. Тогда любую булеву функцию можно представить в виде многочлена от своих переменных и такой многочлен называется многочленом Жегалкина.

Многочленом Жегалкина называется многочлен, являющийся сум­мой константы и различных одночленов, в которые каждая из перемен­ных входит не выше, чем в первой степени.

Многочлен Жегалкина константы равен самой же константе; мно­гочлен Жегалкина булевой функции одной переменной ; многочлен Жегалкина булевой функции двух переменных

многочлен Жегалкина булевой функции трех переменных

и т. д. Коэффициенты и свободный член принимают значения 0 или 1, а число слагаемых в формуле равно 2п, где п — число переменных. Знак ⊕ — сумма Жегалкина или сумма по модулю два.

Теорема 3 (Жегалкина). Каждая булева функция может быть представлена в виде многочлена Жегалкина и притом единственным образом, с точностью до порядка слагаемых.

Сформулируем алгоритм построения многочлена Жегалкина.

Выше было указано, что любую функцию, отличную от константы 0, можно представить в виде СДНФ. Если сравним таблицы истинности дизъюнкции и суммы по модулю два, видим, что они отличаются только последней строкой, т. е. на наборе 11. Так как в СДНФ на каждом наборе только одна конъюнкция равна 1, то все дизъюнкции можно заменить суммами по модулю два. Кроме того, известно, что . На этом и основан первый алгоритм построения многочлена Жегалкина:

1. Находим множество тех двоичных наборов, на которых функция принимает значение 1.

2. Составляем СДНФ.

3. В СДНФ каждый знак дизъюнкции меняем на знак суммы Жегал­кина.

4. Упрощаем, если можно, полученное выражение, используя тожде­ство .

5. В полученной формуле каждое отрицание заменяем на .

6. Раскрываем скобки в полученной формуле, содержащей только функции ∧ и ⊕ и константу 1.

7. Приводим подобные члены, используя тождество .

Используя метод неопределенных коэффициентов, получаем второй алгоритм определения многочлена Жегалкина: составляем систему линейных уравнений относительно 2п неиз­вестных коэффициентов, содержащую 2п уравнений, решением которой являются коэффициенты многочлена Жегалкина.

Многочлен Жегалкина называется нелинейным, если он содержит конъюнкции переменных, а если он не содержит конъюнкции перемен­ных, то он называется линейным.

Функция называется линейной, если ее многочлен Же­галкина имеет вид , и нелинейной в противном случае.

Из определения многочлена Жегалкина следует, что для любой буле­вой функции коэффициенты при переменных и свободный член вычисляются по формулам:

На этом основан алгоритм определения линейности (или нелинейно­сти) булевой функции.

1. По таблицам истинности булевой функции и выше указанным формулам находим коэффициенты:

2. Выписываем многочлен и проверяем, задаёт ли он эту функцию. Для этого строим таблицу истинности многочлена и сравниваем её с таблицей истинности функции .

Если таблицы истинности совпадают, то функция линейная и – её многочлен Жегалкина. В противном случае функция нелинейна.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]