
- •Цель работы
- •2. Краткие теоретические сведения
- •3. Описание лабораторной установки.
- •Паспортные данные индикаторных приборов.
- •Задание №1
- •Задание №2
- •Методические указания к выполнению работы
- •7. Порядок выполнения работы
- •Содержание отчета
- •Вопросы для самоконтроля.
- •Литература.
- •Цель работы
- •Теоретические сведения
- •Задание
- •Методические указания
- •Содержание отчета
- •Контрольные вопросы
- •8. Литература
- •Цель работы
- •Теоретические сведения
- •Описание конструкции
- •Роль сетки в триоде
- •Действующее напряжение триода
- •2.4 Статические характеристики триода
- •2.5 Статические параметры триода
- •2.6 Рабочий режим работы триода
- •2.7 Рабочие параметры триода
- •Порядок выполнения работы
- •Методические указания
- •Содержание отчета
- •7. Вопросы для самопроверки
- •Литература
- •Цель и содержание работы
- •Описание пентода
- •Характеристики и параметры пентода.
- •Параметры пентода
- •Порядок выполнения работы
- •Построение семейства анодных характеристик.
- •8. Содержание отчета
- •9. Контрольные вопросы
-
Действующее напряжение триода
Для расчета величины тока в триоде совместное действие анода и сетки (с их потенциалами) на катод заменяют действием одного сплошного электрода, расположенного на месте сетки реального триода. К электроду приложено некоторое эквивалентное напряжение Uд ("действующее напряжение"), величина которого должна быть такой, чтобы анодный ток получившегося эквивалентного диода равнялся катодному току реального триода. Этот метод расчета токов в триоде называется приведением триода к эквивалентному диоду. Действующее напряжение триода Uд равно:
(1.1)
29
где
- отношение расстояния анод - катод к
расстоянию сетка-катод (для плоской
формы электродов), при цилиндрической
форме электродов rc
и
ra
соответственно
радиус
анода и сетки;
-
проницаемость лампы;
Сак - емкость анод - катод в триоде;
Сск - емкость сетка - катод в триоде.
Проницаемость лампы Д сравнивает электростатическое взаимодействие анода и сетки на катоде, т.е. характеризует степень проникновения поля анода к катоду через витки сетки. Чем гуще сетка, тем слабее проникает анодное поле через ее витки и тем меньше величина Д.
Зная действующее напряжение, можно определить величину катодного тока триода. Для эквивалентного диода получен закон «степени трех вторых»;
(1.2)
Вследствие эквивалентности диода и триода потоков электронов движущихся от катодов, должны быть одинаковы. Следовательно,
Ia(экв.диода)=Iк(триода)=Ia+Ic (1.3)
Для цилиндрической формы электродов триода на основании (1.1), (1.2) и (1.3) имеем:
(1.4)
Qa - площадь поверхности анода;
;-
первеанс триода
- некоторая функция, задаваемая графиком
или таблицей: для плоской формы электродов
30
При отрицательном потенциале сетки ток в ее цепи отсутствует и по соотношению (1.4) определяют ток анода. При положительном потенциале сетки ток катода распределяется между анодом и сеткой.
Коэффициент тока распределения К=Ia / Ic зависит от соотношения напряжений сетки и анода. При Ua³Uc электрическое поле в зазорах катод-сетка и сетка-анод является ускоряющим, траектории электронов близки к прямолинейным. Ток сетки образуется только за счет электронов, которые попадают на витки сетки, т.е. «перехватываются» ею. Большая часть потоков электронов полетает мимо витков сетки в направлении анода. Триод работает в режиме прямого перехвата (РПП).
При Ua£Uc электроны, пролетевшие мимо витков сетки, попадают в зазор сетка-анод в тормозящем поле с разностью потенциалов Uc - Ua . Небольшая часть электронов, движущихся посередине между витками сетки, достигает анода. Значительное число электронов, пролетающих вблизи витков сетки, получает боковое ускорение, их траектории искривляются. Продольная составляющая скорости движения у электронов с наклонной траекторией недостаточна для преодоления тормозящего поля в этом зазоре. Описав криволинейные траектории, они возвращаются к сетке. Описанный случай соответствует режиму возврата электронов к сетке (РВ). При увеличении анодного напряжения уменьшается тормозящее поле в зазоре сетка-анод и кривизна эквипотенциалей электрического поля в области витков сетки. Анодный ток резко увеличивается, а ток сетки уменьшается.
При понижении сеточного напряжения анодный ток уменьшается и при некотором значении Uc, называемом напряжением запирания, становится равным нулю. Из (1.4) следует, что Ik = 0 при Uд = 0. Тогда
(1.5)
Следовательно, напряжение запирания будет тем более отрицательным чем больше проницаемость лампы и чем выше анодное напряжение.
31