
- •Приложение 4. Элементарные математические функции
- •Приложение 5. Элементарные матрицы и операции над ними
- •Приложение 8. Анализ данных и преобразование Фурье
- •Справочник по базовым функциям
- •Общие свойства и возможности рабочего стола MATLAB
- •Клавиша
- •Действие
- •Рис. 3. Общий вид Окна Просмотра Рабочего Пространства
- •Операции с файлами
- •Дуальность (двойственность) команд и функций
- •Сложение и вычитание матриц
- •Векторное произведение и транспонирование матриц
- •Произведение матриц
- •Index exceeds matrix dimensions
- •Двоеточие (Colon)
- •Решение систем линейных уравнений
- •Квадратные системы
- •Переопределенные системы
- •Недоопределенные системы
- •Обратные матрицы и детерминанты
- •Псевдообратные матрицы
- •Степени матриц и матричные экспоненты
- •Положительные целые степени
- •Поэлементное возведение в степень
- •Вычисление корня квадратного из матрицы и матричной экспоненты
- •Диагональная декомпозиция
- •Дефектные матрицы
- •Сингулярное разложение матриц
- •Для матрицы
- •Полиномы и интерполяция
- •Полиномы и действия над ними
- •Обзор полиномиальных функций
- •Функция
- •Описание
- •Представление полиномов
- •Корни полинома
- •Вычисление значений полинома
- •Умножение и деление полиномов
- •Вычисление производных от полиномов
- •Аппроксимация кривых полиномами
- •Разложение на простые дроби
- •Интерполяция
- •Обзор функций интерполяции
- •Функции
- •Описание
- •2. Интерполяция на основе быстрого преобразования Фурье _
- •Основные функции обработки данных
- •Матрица ковариаций и коэффициенты корреляции
- •Конечные разности
- •Функция
- •Описание
- •Отсутствующие значения
- •Программа
- •Описание
- •Полиномиальная регрессия
- •Графический интерфейс подгонки кривых
- •Уравнения в конечных разностях и фильтрация
- •Многомерные Массивы
- •Создание Многомерных Массивов
- •Создание массивов с использованием индексации
- •Удаление поля из структуры
- •Создание функций для операций над массивами структур
- •Основные части синтаксиса М-функций
- •Комментарии
- •Как работает функция
- •Определение имени функции
- •Что происходит при вызове функцию
- •Распаковка содержимого функции varargin
- •Локальные и глобальные переменные
- •BETA = 0.02
- •Операторы
- •Описание
- •Операторы
- •Описание
- •Оператор
- •Описание
- •AND (логическое И)
- •OR (логическое ИЛИ)
- •NOT (логическое НЕ)
- •Использованием логических операторов с массивами
- •Функция
- •Описание
- •Примеры
- •Приложение 3. Операторы и специальные символы
- •Приложение 4. Элементарные математические функции
- •Приложение 5. Элементарные матрицы и операции над ними
- •Приложение 8. Анализ данных и преобразование Фурье
- •(Data analysis and Fourier transforms)
- •Примеры
- •Спецификаторы стилей линии
- •Спецификаторы
- •Стили линии
- •Спецификаторы цвета
- •Примеры

y2 = polyval(p, x2); plot(x, y, 'o', x2, y2); grid on
где функция grid on служит для нанесения координатной сетки, а экспериментальные данные на графике отмечены маркерами о.
.
Как видно из рисунка, полином третьего порядка достаточно хорошо аппроксимирует наши данные.
Разложение на простые дроби
Функция residue вычисляет вычеты, полюса и многочлен целой части отношения двух полиномов. Это особенно полезно при представлении систем управления в виде передаточных функций. Для полиномов a(s) и b(s), при отсутствии кратных корней имеем
b(s) |
= |
r1 |
+ |
r2 |
+ ... + |
rn |
+ k(s) |
|
a(s) |
s - p1 |
s - p2 |
s - pn |
|||||
|
|
|
|
где r есть вектор-столбец вычетов, p есть вектор-столбец полюсов, а k есть вектор-строка целой части дробно-рациональной функции. Рассмотрим передаточную функцию
W(p) =
- 4 + 8s-1
1 + 6s-1 + 8s-2
Для полиномов числителя и знаменателя этой функции имеем:
b = [-4 8]; |
a = [1 6 8]. |
Введя
[r, p, k] = residue(b, a)
получим
45