- •Введение.
- •1. Основы информационных технологий.
- •1.1. Информационное общество
- •1.2. Базовые понятия
- •1.2.1. Информация и данные
- •1. Определение из фундаментального курса «Информатика» под редакцией с.В. Симоновича.
- •1.2.2. Информационные технологии
- •1. Прикладные (внешние) направления.
- •2) Служебные (внутренние) направления.
- •1.2.3. Информационные системы
- •1.2.4. Информационные ресурсы
- •Электронные цифровые материалы, представленные в виде двоичного цифрового кода, воспринимаются человеком через выводные устройства компьютера.
- •Печатные материалы, на бумаге или иной поверхности;
- •3. Обработка запроса клиента и выдача ему результата в виде ранжированного (расположенного по номерам) списка веб-страниц.
- •1.3. Классификация эвм по мощности и месту в информационных системах.
- •1.4. Архитектура пк
- •1.4.1. Аппаратные платформы
- •1.4.2. Операционные системы
- •2. Представление данных в компьютере
- •2.1. Арифметические основы эвм
- •2.1.1. Системы счисления
- •2.1.2. Понятия бит, байт
- •2.1.3. Кодирование данных в компьютере
- •Нанотехнологии
- •2.3. Аналоговый и цифровой сигналы
- •2.2.1. Преимущества цифровых технологий
- •1. Искажения аналогового сигнала за счет помех невосстановимы, цифровой сигнал и при помехах позволяет передать информацию полностью без искажений.
- •2. Точность измерения аналогового сигнала определяется техническими возможностями аппаратуры. Точность задания цифрового сигнала от характеристик аппаратуры зависит очень слабо.
- •2.4. Кодирование текстовых данных
- •2.4.1. Системы кодировки текста
- •Имеется две системы кодировки: на основе ascii и Unicode.
- •2.4.2. Основные характеристики шрифтов
- •Характеристики шрифтов
- •2.4.3. Текстовые форматы.
- •3.5. Базы данных
- •4.5.1. Определение, виды баз данных.
2.2.1. Преимущества цифровых технологий
1. Искажения аналогового сигнала за счет помех невосстановимы, цифровой сигнал и при помехах позволяет передать информацию полностью без искажений.
Почему так происходит? В ходе передачи в линии связи всегда возникают какие-то помехи, искажающие передаваемый сигнал (пунктирные линии на рисунке). Не возникает помех только в идеальном случае, который, как всякий идеал, недостижим. А приемник не может восстановить исходный сигнал, поскольку информацией об исходном сигнале владеет только передатчик.
Совершенно другая ситуация наблюдается с цифровым сигналом. Здесь тоже при передаче возникают помехи – куда же от них денешься (пунктирные линии на рисунке). Но на приеме стоит задача распознать каждый сигнал как 0 или 1 – середины нет. И если все 0 и 1 распознаны правильно, то это значит, что информация передана без искажений.
Помехи могут возникать не только при передаче информации на большие расстояния. Внутри какого-нибудь устройства (телевизор, компьютер и пр.) тоже могут возникать сильные наводки и помехи.
Из сказанного следует два важных вывода.
а) Цифровая техника работает более надежно.
б) Цифровая техника позволяет создать неограниченное число абсолютно идентичных копий.
В аналоговом сигнале каждая стадия копирования будет сопровождаться появлением помех, с ростом стадий последовательного копирования качество сигнала становится все хуже, в конце концов информация совсем перестает читаться.
В цифровом сигнале помехи можно устранить, поскольку известно, что надо устранять – все, что отличается от 0 и 1. И с каждой последующей копии можно делать новую копию, точно так же, как и с оригинала. Правда это достоинство имеет неприятные последствия, поскольку создает почву для пиратства и несанкционированного использования чужой интеллектуальной собственности.
2. Точность измерения аналогового сигнала определяется техническими возможностями аппаратуры. Точность задания цифрового сигнала от характеристик аппаратуры зависит очень слабо.
Заметим, что здесь употребляются два разных термина: для аналогового сигнала мы говорим об измерении, для цифрового – о задании.
Например, сигнал был измерен или задан с точностью до 2-х значащих цифр, пусть это будет 1,2. То есть, в десятичной записи для описания этого значение достаточно 3-х знаков: 2 цифры и запятая. В нормализованной форме это будет выглядеть как 0,12х101. В двоичной записи для описания этого сигнала достаточно 5 знаков: 1100 1. Первые 4 цифры – это мантисса, в данном случае 12, последняя – показатель степени.
Предположим, точность сигнала возросла на 3 порядка, в 1000 раз, и у нас уже имеется сигнал 1,2345.
Повышение точности измерения в 1000 раз для какого-то аналогового устройства, к примеру, вольтметра – это сложная задача, которая так просто не решается. Это может быть плодом многолетней работы большого коллектива. Или результатом сделанного кем-то выдающегося изобретения.
Пример: измерение длины с точностью до миллиметра линейкой и с точностью до микрона – под микроскопом.
А что происходит в цифровых технологиях? Здесь величина не измеряется, не берется из окружающего мира, а задается человеком. И для этого не требуется каких-либо новых технических устройств, достаточно просто предусмотреть больше места в машинной памяти.
В десятичной записи это будет 1, 2345, то есть шесть цифр, в 2 раза больше. Но компьютер работает в двоичной системе, и переводя запись 0,12345х101 в нормализованную форму, получаем 11000000111001 1. Всего 15 цифр. Точность задания сигнала возросла в 1000 раз, а в машинной памяти для этого потребовалось всего лишь в 3 раза больше места.
Можно увеличивать точность задания и в миллион, и в миллиард раз – во столько, во сколько необходимо. Правда, здесь уже могут потребоваться другие объемы машинной памяти и другая тактовая частота процессора. Так что, полной независимости нет. Но в цифровых устройствах эта зависимость несравнимо слабее, чем в аналоговых.
Здесь мы для простоты рассуждений не учитывали того, что вся информация в компьютере передается по байтам, то есть по 8, 16, 24 и так далее двоичных цифр. Но этот факт принципиально ничего в наших рассуждениях не меняет.
2.2.2. Оцифровка аналогового сигнала
Аналоговые сигналы являются первичным источником информации из окружающей среды. Оцифровка сигнала всегда сопровождается потерей качества. Это является недостатком цифровых технологий.
Оцифровка сигнала имеет три этапа: дискретизацию, квантование, кодирование. Их взаимодействие показано на рисунке.
Дискретизация
Кодирование
Квантование
Дискретизация – это разбиение аргументов на равные участки. В любой зависимости есть аргумент, и есть функция. Аргумент задается, а функция изменяется в определенной зависимости от аргумента. Аргумент может быть один, может их быть и несколько. Так, если это какой-то звуковой сигнал, то аргументом служит время. При оцифровке изображения имеем два аргумента: ширина и высота. В обоих случаях аргументы разбиваются на равные части.
Квантование – разбиение области существования функции также на равные участки, число которых составляет 28N, где 8N – разрядность квантования. То есть число участков равно числу возможных сочетаний двоичных цифр в одном, двух, трех и т.д. байтах.
На практике применяются разрядности 1, 2, 3, 4, тогда область существования функции делится на 28 = 256, 216 = 65 536, 224 = 16 777 216, 232 = 4 294 967 296 участков. Функций тоже может быть одна и несколько. Например, в черно-белом изображении функция одна – 256 градаций серого цвета. А в модели RGB функций три: по 256 градаций красного, зеленого и синего цвета.
Кодирование – это разбиение сигнала в соответствии с принятыми правилами дискретизации и квантования. Внутри каждого элементарного участка аргумента функция остается постоянной и этому участку присваивается двоичный код по шкале функций, состоящий из 8, 16, 24 и т.д. двоичных цифр.
В результате получается ступенчатая кривая, которая с увеличением разрядности приближается к реальному сигналу. Ступени могут быть меньше, но никогда не превратятся в плавную линию.
Указанный недостаток, конечно, непреодолим, но в цифровых технологиях можно повысить точность оцифровки до уровня чувствительности измерения аналогового сигнала. И тогда влияние оцифровки сведется к минимуму.
