- •1 Основные понятия радиосвязи
- •1.1 Основы построения устройств радиосвязи
- •1.2 Основные понятия. Общие принципы организации радиосвязи
- •1.3 Диапазоны радиоволн и области их применения
- •1.4 Виды радиосвязи на железнодорожном транспорте
- •2 Колебательные системы
- •2.1 Резонанс
- •2.2 Последовательный колебательный контур
- •2.3 Параллельный колебательный контур
- •2.4 Собственное и вносимое затухания
- •2.5 Полоса пропускания контура
- •2.6 Связанные контуры
- •2.7 Использование резонанса в радиотехнике
- •3 Радиопередающие устройства
- •3.1 Основные функциональные узлы и технические характеристики радиопередающих устройств (рпду)
- •3.2 Основные этапы развития радиопередающих устройств
- •3.3 Классификация рпду
- •Распределение радиоспектра должен исходить на основании закона рк о Связи и данный ресурс используется на основании «Таблицы распределения полос радиочастот между службами радиосвязи».
- •Эффективное использование радиоспектра предполагает постоянное уточнение и разработка обоснованных норм качества совместной работы действующих и вновь организуемых радиослужб.
- •Повышение эффективности использования радиоспектра включает в себя методы на основе совершенствования технической базы радиосистем и на основе применения экономических методов управления.
- •3.4 Основные технические требования, предъявляемые к радиопередающим устройствам
- •3.5 Структурные схемы радиопередающих устройств
- •4 Автогенераторы
- •5 Генератор с внешним возбуждением (гвв)
- •5.1 Назначение и принцип действия гвв
- •5.2 Схема гвв, работающего на избирательную нагрузку
- •5.3 Идеализация статических характеристик электронных приборов
- •5.4 Методы расчета режимов гвв
- •5.5 Динамические характеристики выходного тока эп в гвв
- •5.7 Гармонический анализ анодного тока. Коэффициенты Берга
- •5.8 Параметры граничного режима
- •6 Амплитудная модуляция
- •6.1 Получение модулированных радиосигналов
- •6.2 Детектирование ам–колебаний
- •7 Угловая модуляция
- •7.1 Частотная и фазовая модуляция аналоговых сообщений
- •8 Радиоприемные устройства
- •8.1 Структура и общие характеристики рпу
- •Радиосвязи и вещания;
- •Телевизионные системы;
- •8.2 Обобщенная структурная схема рпу
- •Приемник прямого усиления не может обеспечить высокой чувствительности и хорошей избирательности, особенно в диапазонах кв и укв.
- •8.3 Основные характеристики рпу
- •Диапазон рабочих частот – область частот, в пределах которой рпу может плавно или скачком перестраиваться с одной частоты на другую без существенного изменения качества воспроизведения сигнала.
- •Ширина рабочего диапазона может оцениваться крайними частотами fмин и fмакс и коэффициентом перекрытия диапазона:
- •9 Входные цепи
- •9.1 Назначение и структурная схема входной цепи
- •9.2 Качественные показатели входных цепей
- •9.3 Антенна как источник сигнала
- •9.4 Схемы входных цепей
- •10 Высокочастотные усилители радиочастоты
- •10.1 Назначение и основные характеристики усилителя радиочастоты
- •10.2 Схемы усилителя радиочастоты
- •10.3 Обратные связи в усилителях радиочастоты
- •10.4 Устойчивость работы усилителя радиочастоты
- •10.5 Искажения в усилителях радиочастоты
- •11 Преобразователи частоты
- •11.1 Назначение, структурная схема и принцип работы преобразователей частоты
- •11.2 Общая теория преобразования частоты
- •11.3 Частотная характеристика преобразователя
- •11.4 Диодные преобразователи частоты
- •Результирующий коэффициент шума
- •12 Амплитудное детектирование
- •12.1 Параметрические (синхронные) ад
- •12.2 Диодные ад
- •13 Частотное детектирование
- •13.1 Принцип действия и структурные схемы частотных детекторов
- •13.2 Виды частотных детекторов
- •13.2.1 Чд с преобразованием отклонения частоты в изменение амплитуды
- •13.2.2 Чд с преобразованием отклонения частоты в изменение фазового сдвига
- •13.2.3 Чд с преобразованием чм-колебания в импульсное напряжение с переменной скважностью
- •14 Автоматическая регулировка усиления
- •14.1 Назначение и виды регулировок
- •14.2 Регулировка усиления
- •14.3 Принцип действия и виды ару
- •15 Автоматическая подстройка частоты
- •Список рекомендуемой литературы
- •Темы и содержание лабораторных работ
- •Порядок выполнения лабораторной работы
- •1. Снятие вольтамперной характеристики полевого транзистора
- •2. Определение параметров колебательного контура.
- •3. Исследование колебательных характеристик
- •«Исследование генератора с внешним возбуждением на биполярном транзисторе»
- •Переходная характеристика
- •2. Исследование гвв в динамическом режиме
- •2.1. Исследование зависимости режима работы от амплитуды сигнала возбуждения
- •2.2. Исследование зависимости режима работы от напряжения смещения
- •2.3. Снятие нагрузочной характеристики
- •Лабораторная работа №3
- •«Исследование преобразователя частоты»
- •Цель работы
- •Исследовать основные свойства преобразователя частоты.
- •Описание лабораторного макета
- •Порядок выполнения работы
- •1. Исследование параметров измерительного тракта
- •2. Исследование зависимости малосигнальных параметров преобразователя частоты от режима работы преобразующего элемента
- •3. Исследование дополнительных каналов приема и интерференционных свистов в преобразователе частоты
- •Исследование эффекта блокирования
- •Исследование эффекта интермодуляции
- •Лабораторная работа №4 Исследование системы ару приемника Цель работы
- •Описание лабораторного макета
- •Порядок выполнения работы
- •Международный университет информационных технологий
- •Методические рекомендации по организации срс
- •Программное и мультимедийное сопровождение учебных занятий
- •1 Программное обеспечение (по)
- •2 Технические средства обучения (тсо)
- •5В071900- Радиотехника, электроника и телекоммуникации
- •Примерные тестовые задания для рубежного контроля
2.5 Полоса пропускания контура
На рисунке 2.7 были показаны резонансные кривые контуров при различных значениях их добротности. Чем больше добротность контура, тем резонансная кривая оказывается уже.
Рисунок 2.8 К определению полосы пропускания
Для оценки ширины резонансной кривой используется понятие полосы пропускания контура, которой называется интервал частот вблизи резонансной частоты, на границах которого амплитуды тока или напряжения уменьшаются до 0,707 от их значения при резонансе. Это соответствует уменьшению мощности в два раза. На рисунке 2.8 показан способ определения полосы пропускания по резонансной кривой. Полоса пропускания обозначается буквой П и измеряется в герцах, как и частота.
Можно доказать, что если известны резонансная частота контура и его добротность или затухание, полоса пропускания находится путем умножения резонансной частоты на затухание:
П = f0 d.
Знание полосы пропускания контура крайне важно, так как большинство устройств должно быть рассчитано на прохождение сигналов не одной определенной частоты, а целого спектра частот. Если полоса пропускания контура будет уже необходимой, крайние частоты этого спектра будут ослаблены. Если же полоса пропускания окажется шире необходимой, устройство будет пропускать помехи, частоты которых находятся вне полезного спектра. При необходимости можно воздействовать на полосу пропускания как в сторону ее сужения, так и в сторону расширения. Если необходимо сузить полосу пропускания, нужно увеличить добротность контура, например увеличением индуктивности и соответствующим уменьшением емкости для сохранения прежней резонансной частоты. Если же необходимо расширить полосу пропускания, это легко достигается подключением к контуру дополнительного шунтирующего резистора.
Шунтирование контуров резисторами в целях расширения их полосы пропускания широко используется в радиоаппаратуре, например в телевизионных и радиолокационных приемниках.
2.6 Связанные контуры
Колебательный контур является частотно-избирательной системой, пропуская сигналы, лежащие в его полосе пропускания, и ослабляя помехи, находящиеся вне полосы. Идеальной для такого частотного фильтра была бы характеристика прямоугольной формы с плоской вершиной и крутыми склонами. Тогда сигналы проходили бы без ослабления, а помехи полностью подавлялись. Однако форма частотной характеристики одиночного контура весьма далека от идеальной. Значительно ближе к прямоугольным характеристики систем из двух колебательных контуров. На рисунке 2.9 приведены схемы двухконтурных полосовых фильтров с разными способами связи между контурами. Коэффициент связи между ними k для схемы а равен отношению взаимной индуктивности М к индуктивности контура, для схемы б - отношению емкости связи к емкости контура, для схемы в - отношению емкости контура к емкости связи. Для индуктивно-емкостной связи выражение для коэффициента связи сложнее, и приводить его не будем.
Рисунок 2.9 – Виды связи между контурами: индуктивная (а), внешне-емкостная (б), внутренне-емкостная (в) и индуктивно-емкостная (г)
Форма частотной характеристики зависит от соотношения между коэффициентом связи и затуханием контуров. С увеличением коэффициента связи коэффициент передачи при резонансе растет, достигая максимума при k = d, а частотная характеристика одногорбая (один максимум). При дальнейшем увеличении коэффициента связи характеристика становится двугорбой (два максимума с провалом на частоте резонанса), глубина провала растет, а горбы постоянного уровня раздвигаются.
На рисунке 2.10 показаны характеристики полосовых фильтров с индуктивностями по 300 мкГн, емкостями по 1000 пФ и активными сопротивлениями 20 Ом (затухание 0,0365) при разных коэффициентах связи. Пунктиром показана характеристика аналогичного одиночного контура, уменьшенная вдвое по высоте. Если сравнить ее с характеристикой двухконтурного фильтра при k = d, видно, что характеристика двухконтурной системы обладает более плоской вершиной и более крутыми склонами. Характеристики приведены для положительных значений относительной расстройки. В области отрицательных расстроек кривые располагаются симметрично.
В связи с тем, что при равенстве коэффициента связи затуханию происходит переход от одногорбой характеристики к двугорбой, такая связь называется критической.
При критической связи резонансный коэффициент передачи максимален, и таков же коэффициент передачи при связи больше критической.
Рисунок 2.10 АЧХ полосовых фильтров
