Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
199
Добавлен:
18.06.2014
Размер:
786.43 Кб
Скачать

§5. Интегрирование рациональных функций.

Рациональной функцией называется функция, являющаяся отношением двух многочленов (полиномов):

Если Q(x) ≡ 1, то f(x) = P(x) , т.е. многочлен является частным случаем рациональной функции – целая рациональная функция. Рациональную функцию (1) /Q(x)1/ называют дробно-рациональной функцией (или рациональной дробью).

Без ограничения общности можно считать, что многочлены P(x) и Q(x) не имеют одинаковых нулей (корней), т. к. в противном случае можно сократить дробь (1) на общие множители.

Рациональною дробь (1) называют правильной, если степень числителя ниже степени знаменателя, т. е. n < m. Если же nm, (1) называется неправильной.

Если рациональная дробь (1) неправильная, то её можно всегда представить в виде суммы целой рациональной функции (целой части) и правильной рациональной дроби. /например, деля числитель на знаменатель как два полинома/:

гдеR(x) – полином, P1(x)/Q1(x) правильная дробь.

Интегрирование полинома не составляет труда, поэтому будем рассматривать

полагая P(x)/Q(x) правильной.

1. Изучим сначала интегрирование простейших (элементарных) рациональных дробей.

Определение. Правильные рациональные дроби вида

I.

II. /kнатуральное число ≥ 2/,

III. /знаменатель не имеет действительных корней, т. е.

; A, B, a, p, qдействительные числа /,

IV. /kнатуральное число ≥ 2; знаменатель не имеет действительных корней/,

называются соответсвенно простейшими рациональными дробями I, II, III и IV типов.

Интегрирование дробей первых трёх типов осуществляется просто.

/см. §3/.

Интегрирование простейших дробей IV типа осуществляется таким же методом, но выкладки значительно сложнее. Мы в этом же параграфе рассмотрим метод Остроградского, который позволит интегрировать любые рациональные дроби, применяя интегралы только от простейших дробей первых трёх типов.

2. Разложение рациональной дроби в сумму рациональных дробей. Справедлива (доказательство опускаем) следующая

Теорема Всякая правильная несократимая рациональная дробь может

быть представлена как сумма конечного числа простейших рациональных дробей, а именно

если(2)

то дробь может быть представлена в виде:

(3)

На практике эту теорему применяют следующим образом. Каким – либо образом знаменатель дробиQ(x) представляют в виде (2), причём квадратные трёхчлены имеют дискриминанты отрицательные и потому уже не могут разлагатся в произведение линейных множителей с действительными коэффициентами. Затем пишут для дроби

соответствующее разложение (3) с буквенными коэффициентами A,A1, … L-1,

S-1. Эти коэффициенты определяют по методу неопределённых коэффициентов. Равенство (3) есть тождество, поэтому, приведя дроби справа к наименьшему общему знаменателю (он, очевидно будет равен Q(x)), получают тождественное равенство числителей, двух многочленов – P(x) и того, который получится справа. Приравнивая коэффициенты при одинаковых степенях x, получают систему линейных уравнений относительно A, A1, A2, … L-1, S-1, из которой их и определяют.

Замечание 1. Уравнение для определения коэффициентов можно получать и другим способом. Т. к. полученное равенство числителей есть тождество, то давая x конкретные (удобные!) значения, имеют необходимые уравнения для определения этих коэффициентов (более простые, чем в описанной выше системе).

Замечание 2. Из выше изложенного следует такой вывод: неопределённый интеграл от рациональной функции всегда может быть выражен через конечное число элементарных функций.

Примеры 1)Вычислить интеграл

Подинтегральная функция f(x) является правильной рациональной дробью. Знаменатель уже разложен в произведение простых (неприводимых) множителей, т. к. x2 + 2 не имеет действительных корней /x1,2 = i 2/.

Разложим подинтегральную дробь в сумму простейших дробей:

Приведём дроби справа к наименьшему общему знаменателю и приравняем числители:

x3 + 4x2 + 6 A(x2 + 2) + B(x +1)(x2 + 2) + (Cx + D)(x +1)2. (4)

или x3 + 4x2 + 6 = (B + C)x3 + (A + B + 2C +D)x2 + (2B + 2D + C)x + (2A + 2B + D).

Приравнивая коэффициенты при x3, x2, x1, x0, получим систему четырёх линейных уравнений с четырмя неизвестными A, B, C, D:

(5)

Ещё из тождества (4) при удобном значении x = – 1 получаем дополнительное простое уравнение: 3A = 9, откуда A = 3

Последующее решение системы (5) даст: B = 1/3, C =2/3, D = –2/3

Итак,

2) Вычислить самостоятельно

Ответ: